Cultivating Performance Awareness in a Testing Project: A Focus
on Machine-Readable Travel Documents

Lu Xiao
Stevens Institute of Technology
Hoboken, New Jersey, USA
Ixiao6@stevens.edu

Eman Abdullah AlOmar

Stevens Institute of Technology
Hoboken, New Jersey, USA
ealomar@stevens.edu

ABSTRACT

This paper presents a course project to integrate performance en-
gineering concepts into a software testing and quality assurance
curriculum. It uses the real-world context of validating and testing
Machine-Readable Travel Documents (MRTDs) to integrate multi-
ple testing techniques, including unit testing, mocking, mutation
testing, and performance measurement. This integration allows
students to “connect the dots” between different testing methodolo-
gies, enhancing their ability to apply them holistically in software
testing projects. A key goal of the project is to help students under-
stand how performance testing naturally fits into the overall testing
process—just as it would in real-world practice—alongside func-
tional testing. Students engage in hands-on exercises that require
evaluating both functional correctness (e.g., conformance to MRTD
standards) and performance attributes, such as execution time and
the cost of encoding and decoding large sets of input records. The
preliminary results suggest that this approach not only deepens
students’ understanding of performance engineering but also en-
courages them to view testing as a multifaceted process. We share
this project with other educators as a framework for incorporating
performance testing into software testing curricula, ensuring that
students can practice critical testing skills in a real-world context.

CCS CONCEPTS

« Software and its engineering — Software organization and
properties; Software performance; « Social and professional
topics — Software engineering education.

KEYWORDS

Performance engineering. Software engineering curriculum devel-
opment. Software Testing. Performance Testing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE Companion '25, May 5-9, 2025, Toronto, ON, Canada.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00

https://doi.org/10.1145/XXXXXX XXXXXX

Andre B. Bondi
Stevens Institute of Technology

Hoboken, New Jersey, USA
abondi@stevens.edu

Yu Tao
Stevens Institute of Technology

Hoboken, New Jersey, USA
ytao@stevens.edu

ACM Reference Format:

Lu Xiao, Andre B. Bondi, Eman Abdullah AlOmar, and Yu Tao. 2025. Culti-
vating Performance Awareness in a Testing Project: A Focus on Machine-
Readable Travel Documents. In Companion of the 16th ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE Companion °25), May
5-9, 2025, Toronto, ON, Canada. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/XXXXXX XXXXXX

1 INTRODUCTION

In the field of software engineering, non-functional requirements
such as performance and scalability are essential for the success
of software systems [28, 33, 34]. The importance of performance
evaluation for computer science was prominently advocated in the
1980s [8]. Despite that, performance engineering remains under-
emphasized in most undergraduate curricula. Although real-world
applications rely heavily on system scalability, resource utilization,
and response time, these topics are often only briefly covered in
traditional software development courses, leaving many gradu-
ates with limited exposure to performance modeling and analysis
[3, 29, 30]. This educational gap becomes evident in the workplace,
where engineers are expected to design not only functionally cor-
rect systems but also ensure they perform efficiently under various
constraints [31]. Recent studies show that new graduates frequently
struggle with understanding and addressing performance concerns,
often having to develop these critical skills, such as performance
optimization and bottleneck analysis, through self-learning on the
job rather than through formal education [10, 21].

The consequences of neglecting performance considerations
are significant, as seen in high-profile failures like the crashes of
healthcare.gov when it was rolled out and of COVID-19 vaccination
scheduling websites at the height of the recent pandemic. These
incidents highlight the risks of overlooking performance during the
software development lifecycle [11]. They underscore the urgent
need for educational programs that equip students with the tools
to proactively address performance issues from the outset [1].

At Stevens Institute of Technology, our software testing course
covers a range of testing methodologies, such as unit testing, test-
driven development, mocking, and test automation. In addition to
functional testing, students are introduced to performance testing
and other non-functional aspects, helping them evaluate how sys-
tems behave under different constraints [12][4],[5]. However, feed-
back from past students revealed challenges in connecting various

https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX
https://doi.org/10.1145/XXXXXX.XXXXXX

ICPE Companion ’25, May 5-9, 2025, Toronto, ON, Canada.

testing techniques and in incorporating non-functional require-
ments like performance into overall testing. To address this, we
developed the Machine-Readable Travel Document (MRTD) project,
which integrates different testing techniques while emphasizing the
critical importance of performance testing in real-world scenarios.

The MRTD project was inspired by a real-world incident re-
ported by The Guardian [23], in which a 101-year-old Italian man
was mistakenly categorized as a baby by the UK’s immigration
system due to errors in processing his MRTD data. The problem
arose because the standard passport format only stores the last two
digits of the bearer’s year of birth. This incident sparked classroom
discussions on how MRTDs handle sensitive data like birth dates
and the broader implications of data formats being constrained by
international standards for documents and restricted information
storage space. These discussions led to the development of the
MRTD project, which emphasizes not only functional correctness,
such as validating conformance to international standards, but also
non-functional testing aspects like performance. The project re-
quires students to apply a variety of testing techniques, including
unit testing, mutation testing, and mocking for unimplemented
components such as database interactions and hardware scanners.
Additionally, the project incorporates performance testing by ask-
ing students to measure execution times for encoding and decoding
large sets of MRTD records, providing insights into system scala-
bility and processing efficiency. By combining these functional and
non-functional testing elements, the MRTD project highlights the
critical importance of both accuracy and performance in systems
that process large volumes of standardized data, making it an ideal
case study for this paper.

We conducted a preliminary evaluation of this project in the
class taught during the 2024 fall semester. Among the 40 undergrad-
uate and graduate students in the session, eight students consented
and completed a survey that asked about their confidence about
performance. Overall, the survey results highlight the effectiveness
and usefulness of the different parts of the project in achieving
their respective learning objectives. Students have also reported
improved confidence in three key learning objectives of this project:
1) applying unit testing techniques, such as mocking and mutation
testing; 2) connecting different testing techniques, from require-
ments analysis to performance measurement; and 3) specifically,
integrating performance measurements into the testing life cycle.
However, two students reported reduced confidence in integrating
performance analysis, which motivated us to further improve the
design of the project. For example, we plan to emphasize perfor-
mance engineering concepts more explicitly in different parts of
the project in future iterations.

2 MRTD PROJECT DESIGN

An MRTD should present the information necessary for automated
inspection in any country using visual inspection and machine-
readable (optical character recognition) means. Figure 1 is an ex-
ample composed of two parts: a visual inspection zone (VIZ) and a
machine-readable zone (MRZ). The MRZ contains two lines. The
first line specifies the Type of document, such as a passport, visa, or
identity card, the issuing country, and the name of the holder. The
second line specifies the passport number, country code, birth date,

Lu Xiao, Andre B. Bondi, Eman Abdullah AlOmar, and Yu Tao

UTOPIA \

Passport/ Tye/ Type Country code/ Code dupays Passport No. N* de passeport
Passeport P uto 1898902C3
Sumame! Nom
ERIKSSON
Gven names/ Prénoms
ANNAMARIA
Natonalty! Natonaité
UTOPIAN'UTOPIENNE
Date of Biih Date de naissan

Personal No. N persomne iz
12 AUG/AOUT 74 ZE 184226 B
sext sexe Place of bt Liew de nalssance
ZENITH
Date of issue/ Dote d évance Authorty! Autorté
16 APR/AVR 07 PASSPORT OFFICE
DieS S1 e/ Dete mpaton Holder's signature/ Signature du ttulaire
FSAPES 52 Anna Mavia Exifisson /
docyment fype Tastname frst name _middie name
P<UTOERTKSSON<<ANNA<MARTAK<< <LK KLKLLKLLLLLLLLL)
issuing country ‘given name
L898902C36UT07408122F12041592ZE184226B<<<<<<1 MRZ

piration dafe
(YYMMDD) |

- YYMN _/
check digit for passport check digi for birth date __check digitfor expiration date ___check digitfor personal number

Figure 1: An Example Machine Readable Travel Document.
Source: [14].

Example 2 — Application of check digit to document number field

Using the number AB2134 as an example for coding a 9-character, fixed-length field (e.g. passport number), the
calculation will be

Sample data element A B 2 1 3 4
Assigned numeric values: 0 1 2 1 3 4 o 0o o
Weighting 7 3 1 7 3 1 73 1
Step 1 (multiplication) Products: 70 33 2 7 9 4 0 0 0

Step 2 (sum of products) 70 +#33 +2 +7 +9 +4 +0 +0 +0=125

Step 3 (division by modulus) 125 = 12, remainder 5

10

Step 4. Check digit is the remainder, 5. The number and its check digit shall consequently be written as AB2134<<<5

Figure 2: Check Digit Example. Source: [14].

gender, expiration date, and personal number. In addition to these
information fields, there are four check digits inserted in between
and at the end of the information fields. Figure 2 illustrates the
algorithm for calculating the check code. In the example, they are
“6”,“2”,“9”, and “1”. The check digit is used to check the correctness
of the information fields. We provide the detailed illustration of
how the check digit is calculated in the assignment based on the
MRTD specification [14].

Students are tasked to implement a “system” that “reads” the
MRZ of a travel document, verifies its check digits, and reports any
mismatches. Assume the system scans the MRZ using a hardware
device to obtain two text lines. Students implement an algorithm
to decode these strings into their respective fields and identify
the check digits. In the reverse direction, students implement an
algorithm to encode provided document information, including
name, DOB, etc., back into the MRZ format. If any field’s data
does not match its check digit, the system must indicate where the
discrepancy occurred.

The students were guided to accomplish this project through the
following parts:

2.1 Part 0: Project Planning

Before the students embark on this project, we ask the team to draw
a Gantt chart [20, 27] to depict the tasks and the planned timeline.
The plan should show the dependencies between the tasks. Upon
completion of the project, students should add another column to

Cultivating Performance Awareness in a Testing Project: A Focus on Machine-Readable Travel Documents

the Gantt chart to show who did the work and when each task was
completed.

The project planning phase encourages students to collaborate,
enhancing their communication and teamwork skills. We required
students to create a Gantt chart. This helps them learn to visualize
project timelines and task dependencies. In particular, students were
required to consider performance requirements and verification
in the planning phase, instead of treating them as an afterthought.
This initial planning also fosters a sense of ownership and account-
ability, as students must define their roles and responsibilities. This
experience mirrors industry practices, where clear project manage-
ment is crucial for successful software delivery [22].

2.2 Part 1: Requirements Analysis

We first ask the students to read the specification documenta-
tion [14] of the MRTD and the project requirements. The expecta-
tion is for students to identify any ambiguity in the current require-
ment specifications. Students can obtain additional information
from the MRTD document or make assumptions to remove ambigu-
ity. Particularly, we intentionally define the performance require-
ment vaguely as “The system shall efficiently process the encoding
and decoding of information." Students are expected to redefine
the respective performance requirements with measurable metrics.
Additionally, ambiguities may arise in the interpretation of date
formats and input validation against international standards, etc.

By reviewing and clarifying project requirements, students prac-
tice confronting real-world challenges where requirements are of-
ten incomplete or ambiguous [7, 24]. This process also highlights
the relevance of performance requirements and conformance to
standards, encouraging students to consider broader implications
beyond mere functionality. Students practice essential skills in com-
munication and documentation, preparing them for collaborative
environments where clear specifications are critical for project
success.

2.3 Part 2: Implementation and Unit Testing

Next, students focus on implementing and testing the encoding
and decoding algorithms for the MRTD system. In this part, stu-
dents practice three key techniques in Unit testing, which is a key
component of software quality assurance [6, 16, 26]: 1) test-driven
design [2], 2) mocking [18], and 3) mutation testing [32], which are
elaborated below:

Students first follow the test-driven design approach [2, 9], where
they define test cases before they fill in the functions to make the
test cases pass. This underscores the concept that testing is integral
to the coding process [2, 13, 19]. Meanwhile, an MRTD system
naturally relies on a hardware device to scan traveler’s information
and access a database to retrieve or store related information. This
provides the opportunity for students to use mocking to isolate the
dependencies on hardware scanning or accessing an SQL database
in the context of this project. This task prepares them for real-
world scenarios where not all components are readily available.
Additionally, we asked students to use MutPy ! to perform mutation
testing to examine how well their test cases are likely to capture
bugs in the algorithms. This exercise encourages them to critically

Uhttps://pypi.org/project/MutPy/

ICPE Companion ’25, May 5-9, 2025, Toronto, ON, Canada.

evaluate their testing strategies, fostering a mindset of continuous
improvement [15, 25].

Of particular note, as part of the test coverage report, we ask
students to examine the execution time of their test cases, and
reason how the execution time might be impacted if they had used
the real physical scanner and had accessed an external database,
without using mocking. The execution efficiency of test cases is
critical in modern CI/CD environments but is seldom explicitly
mentioned. Admittedly, this task mainly focuses on unit testing,
which is not directly relevant to the performance engineering of the
MRTD project. However, it provides an opportunity for students
to understand a key motivation of using mocking—improving test
execution efficiency—in a more general context.

2.4 Part 3: Performance Measurement

In this part, students were asked to measure the performance of
their encoding and decoding algorithms with large input data sets.
To this end, we had the students read two input files. The first input
file contains 10,000 encoded fictitious passport records supposedly
scanned from MRTDs. Each line of the input file contains both
lines of a fictitious record corresponding to the two lines in Fig-
ure 1 separated by a semicolon. The students’ task is to measure
the execution times to process the first 100 records, the first 1000
records, and the first n thousand records for n running from 1 to
10. Likewise, the second input file contains 10,000 decoded records.
Each block contains the issuing country, last name, given name,
passport number, country code, birth date, sex, expiration date, and
personal number that are needed to generate the records to appear
on the MRTD. The students will use Python timing libraries ? to
measure how long the program takes to run. Finally, students were
asked to use Excel (or some other tool) to plot the data to show how
the execution time changes with the increase of input size, and also
write one or two paragraphs explaining their results.

By providing students with large test files and requiring them to
measure execution times, this phase emphasizes the importance of
performance metrics and measurements in software applications. It
encourages students to analyze the efficiency of their implementa-
tions and make data-driven decisions regarding optimizations. The
practical experience gained in plotting execution times cultivates an
understanding of the impact of input size on performance, bridging
theoretical knowledge with practical application.

2.5 Part 4: Test Planning in (Hypothetical)
Practice

In real-world software projects, not all system details or require-
ments are fully known at the start. The MRTD application is no
exception: it may have evolving user needs and unforeseen con-
straints. Consequently, students are asked to write a more compre-
hensive test plan that reflects these uncertainties. Students were
asked to analyze several core assumptions and decisions, including:
Which features are most critical? What risks (technical, operational,
performance-related) might jeopardize project success? How gen-
erous or limited is the testing budget? How does this affect the
overall project scope, particularly in terms of both functionality

Zhttps://realpython.com/python-timer/

https://pypi.org/project/MutPy/
https://realpython.com/python-timer/

ICPE Companion ’25, May 5-9, 2025, Toronto, ON, Canada.

and testing depth? What does “success” mean from both a verifi-
cation (meeting specified requirements) and validation (meeting
end-user needs) perspective? How do we account for performance
as part of success? These assumptions provide a foundation for
the test plan. Note that while budgets and timelines may constrain
the project, testing itself should remain a priority. If a budget is
limited, teams might descope certain features, but the testing of the
remaining critical functionality—including performance—must not
be compromised.

This exercise mirrors industry practices where thorough test
planning is key to software quality. Students are exposed to the
depth of strategic decision-making required for professional soft-
ware development. Incorporating performance engineering ensures
they also learn how to anticipate and address scalability or speed
bottlenecks proactively instead of treating it as an after-thought.

3 PRELIMINARY EVALUATION

3.1 Evaluation Design

This study was approved by the Stevens Institutional Review Board
(IRB). We used an anonymous survey to gather feedback on the
students’ experiences, challenges, and learning outcomes from this
project. All participants provided their informed consent prior to
participating in the study. The survey can be found here 3. As sug-
gested by Kitchenham and Pfleeger [17], we use a 5-point ordered
response scale (‘Likert scale’) questions, open-ended questions, and
multiple choice questions. The survey is composed of five logical
parts:

The first part asks about participants’ educational background,
such as program of study and years of experience with program-
ming.

The second part asks about the effectiveness of different parts
of the project in achieving their respective learning outcomes. For
instance, for Part 0, we ask “How effective was creating and maintain-
ing a Gantt chart in helping you organize and execute the project?” We
also ask students to provide open-ended input by asking “What did
you learn about project management and teamwork from this part?"
As another example, for Part 3, we ask “How much do you think this
project helps you integrate performance measurement into the gen-
eral testing practice?” and also ask an open-ended question, “What
did you learn about the relationship between performance metrics
and software quality?” Furthermore, we also ask a multiple-choice
question, where students select the part(s) that they think are most
helpful.

The third part asks students to self-evaluate their confidence
in applying three key aspects aimed by the project: 1) applying
software testing techniques, including unit testing, mocking, and
mutation testing; 2) the integration of performance analysis into the
software development lifecycle; and 3) connecting different testing
techniques, including performance testing, in a cohesive testing
plan. The students were asked to evaluate these three aspects on a
scale of 1 to 5 based on their confidence as “before" and “after” this
project.

Finally, we ask students open-ended questions about their overall
comments, suggestions, and challenges of the project.

3https://github.cnm/lxiao(y/SSW567-MRTD/

Lu Xiao, Andre B. Bondi, Eman Abdullah AlOmar, and Yu Tao

3.2 Results

We distributed the survey to a total of 40 students (30 undergrad-
uate and 10 graduate students) taking this course in the 2024 Fall
semester. We collected a total of 13 responses, out of which 5 were
incomplete and thus excluded from the results. Therefore, our re-
sults are derived from 8 complete survey results with participants’
consent.

Participant Background. All participants are above 18 years old
and are majoring in Software Engineering. They have from 1 to 5
years of programming experience, with an average of 2.6 years and
a standard deviation of 1.3.

Effectiveness of Different Parts. Figure 3 shows the rating of effec-
tiveness we received on each part. As we can see, for all five parts
of the project, the majority of participants rated their effective-
ness/usefulness for their learning of their respective objectives 4 or
5 on a scale of 1 to 5 (5 means most effective and 1 least effective).
More specifically, the average and standard deviations on the five
parts are: Part 0 (4.25,0.97); Part 1 (4.13,0.78); Part 2 (4.25,0.83);
Part 3 (3.75,1.2); and Part 4 (4.13,0.78). The ratings overall suggest
the effectiveness and usefulness of each part of the project.

When asked to select the most useful parts of the project, Part
0, Part 2, and Part 3 received 5 votes each, Part 1 received 4 votes,
and Part 4 received 2 votes.

Key Learning Outcomes. Figure 4 shows the comparison of stu-
dents’ self-reported confidence in the three key learning objectives
in 1) applying the unit testing techniques shown in Figure 4a; 2)
connecting different testing techniques from the parts of the project
shown in Figure 4b; and 3) integrating performance analysis shown
in Figure 4c. For the first two objectives, 5 and 6 (majority) of the
8 students reported improved confidence by up to 3 levels (from
a scale of 2 to a scale of 5). For objective 3: the confidence in inte-
grating performance analysis, 4 (50%) students reported increased
confidence. However, 2 students reported decreased confidence by
1 level, and 2 students reported no change.

Open Comments and Challenges. We also received rich open-
ended input regarding how and why students think the parts are
useful to them. In Part 0, students commented “From this part of the
project, I learned the importance of clear planning and task prioriti-
zation in project management. Breaking the project into manageable
tasks and defining deadlines helped keep the project on track...I learned
that testing plays a vital role in ensuring the quality and reliability
of the final product.” and also “Advanced planning of each phase of
the project, from requirements through every kind of testing, allowed
for progress to be more consistently made without conflict, especially
asynchronous progress.”

For Part 1, we received comments like ‘T gained the insight that
clear and detailed requirements are crucial for the success of any
software project..” and ‘T realized that clear requirements are needed
in order to make an effective project because without them, it is hard
to develop proper functionality.”

For Part 2, students commented on challenges faced when first
trying to practice mocking and mutation testing “Using mocks and
mutation testing was hard to use at first as I have never done it before.
However, after reading documentation and constant testing, I was able

https://github.com/lxiao6/SSW567-MRTD/

Cultivating Performance Awareness in a Testing Project: A Focus on Machine-Readable Travel Documents

ICPE Companion ’25, May 5-9, 2025, Toronto, ON, Canada.

Part0: Planning Part1: Requirement Anaysis Part2: Impl. And Unit Testing Part3: Perf. Measurement Part4: Test Planning
a 3 4 8 3 3 2 4 2 3 3 2 3 3
- 2 2 2 2 || 2 2
fo g o I Eo o I Fo o B I £0 0 I Eo o

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Scale 1-5 Scale 1-5 Scale 1-5 Scale 1-5 Scale 1-5
(a) Part 0 (b) Part 1 (c) Part 2 (d) Part 3 (e) Part 4
Figure 3: Rating on Different Parts of MRTD Project
s s s Students also made great suggestions for improvements: “To

&
S

2 —pefore —After

\\\/ \

—Before —After

@

Scale 1-5
@

Scale 1-5
N

~

" —Before After

-

12 3 456 7 8
Participent ID #

1 2 3 4 5 6 7 8
Participent ID #

1 2 3 45 6 7 8
Participent ID #

(a) Unit Testing Tech-
niques

(b) Connecting Test-(c) Integrating Perfor-
ing Techniques mance Analysis

Figure 4: Key Learning Objectives

to figure it out.” and “For mutation testing, it was tricky to identify
how mutations impacted functionality. I addressed this by analyzing
mutants, improving test coverage, and ensuring that edge cases were
included.”.

For Part 3, students commented ‘T learned that performance met-
rics are crucial indicators of software quality. They help assess how
efficiently the system handles large datasets and performs under stress,
directly affecting user experience. Even if a system functions correctly,
poor performance can lead to delays or failure in real-world appli-
cations. Monitoring metrics like execution time and resource usage
ensures that the software is not only correct but also scalable and
responsive.”

For Part 4, students commented “The most insightful aspects of test
planning were risk identification and budget considerations. Identify-
ing potential risks, such as performance bottlenecks or misalignment
with standards, helped prioritize testing efforts and ensure that criti-
cal issues were addressed first. Budget considerations emphasized the
importance of using open-source tools to minimize costs, while still
achieving comprehensive testing coverage and performance validation.
Balancing resources and risks helped create a focused, cost-effective
testing strategy.”

As for the most important skills learned from the project, stu-
dents commented “The most valuable skill I gained from this project
was the ability to integrate comprehensive testing strategies into the
software development process. This included writing unit tests, per-
forming mutation testing, and analyzing performance metrics. It
taught me how to ensure both the correctness and efficiency of a
system, while also emphasizing the importance of planning, risk man-
agement, and resource allocation in delivering high-quality software.”;
“The Gantt chart and the organization to it. I also learned how to test
code efficiently and correctly.” and “The most valuable skill I gained
from this project was being able to test based on certain requirements
and tailor the project based on these requirements.”

enhance learning and clarity, I suggest incorporating real-world com-
ponents, such as actual hardware interaction or a simple database for
encoding/decoding, to provide a more practical experience. Addition-
ally, clearer documentation of the MRZ format and encoding rules
would ensure better understanding. Expanding testing scenarios to in-
clude more complex edge cases would help deepen knowledge of error
handling. Using collaborative tools like Jira or Trello could improve
task management and teamwork, while time-boxed performance tests
under resource constraints would offer a more realistic view of system
performance in real-world conditions.”

4 LESSONS LEARNED

This paper aims to provide a framework for educators to incorpo-
rate both functional and non-functional testing into their curricula
using the Machine-Readable Travel Document (MRTD) project as a
foundation. While the current scope of the project equips students
with essential skills in testing and performance evaluation, there
are numerous ways in which the depth and breadth of the project
can be expanded to further enhance its educational impact.

One potential direction is to extend the project by introducing
more complex, real-world scenarios. For instance, students could
be tasked with managing various versions of the MRTD standard
or handling documents from different countries with unique re-
quirements. This would simulate the complexities of global systems,
teaching students to navigate variations in standardized protocols.

In addition, the framework could be expanded to cover other
non-functional requirements. For example, introducing security
concerns—such as encryption of sensitive personal data or valida-
tion of data integrity—could provide a practical lesson in developing
secure systems. Likewise, adding maintainability considerations,
such as code complexity or adherence to software design principles,
would encourage students to think beyond short-term solutions
and consider the long-term sustainability of their code.

Concerning data presentation, our original plan was to evaluate
students’ understanding and confidence about software perfor-
mance with questionnaires, as described in the previous section.
We also had the opportunity to qualitatively evaluate students’
understanding of their experimental results in the MRTD project
and in a project involving load simulation in another course by
examining their reports in detail. We found that the quality of
their reports showed highly variable abilities to plan, analyze, and
present quantitative results of their experiments in an organized
and coherent manner. An assignment of this nature in open-ended
terms allows us to assess students’ abilities to deal with quantita-
tive data but might deprive the instructors of the opportunity to

ICPE Companion ’25, May 5-9, 2025, Toronto, ON, Canada.

guide students on how this work should be done and presented
for future maximum impact in the workplace. Based on this ex-
perience, we believe that it would be worthwhile to describe how
performance data should be obtained and presented in detail, so
that students are trained in the production of succinct, coherent
reports on their experimental work. Therefore, instructors should
be encouraged to devote about an hour of class time to data presen-
tation and report preparation. Written guidelines could be given
on how experimental assignments should be done.

5 CONCLUSION

The Machine-Readable Travel Document (MRTD) project offers a
framework for integrating both functional and non-functional test-
ing into software engineering education. Beginning with project
planning and test strategy development, students engage in project
management practices that reflect real-world testing environments.
The core functional components include check digit validation and
unit testing, where students apply a test-driven development ap-
proach to ensure conformance to international standards. Mutation
testing further enhances the robustness of their test cases, while
mocking allows them to isolate system components without im-
plementing external dependencies. The project also emphasizes
performance testing, challenging students to measure system ef-
ficiency while understanding the impact of testing overhead. By
combining these diverse testing techniques, the MRTD project pro-
vides students with a hands-on learning experience that mirrors
the complexities of real-world software systems and offers a flexible
foundation for future expansions. Additionally, we plan to expand
the sample size to strengthen the results.

ACKNOWLEDGEMENT

This work was supported in part by the U.S. National Science Foun-
dation (NSF) under grants CCF-2044888 and DUE-2142531.

REFERENCES

[1] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni.
2004. Model-based Performance Prediction in Software Development: A Survey.
IEEE Transactions on Software Engineering 30, 5 (2004), 295-310.

[2] Kent Beck. 2022. Test driven development: By example. Addison-Wesley Profes-
sional.

[3] A.B.Bondi. 2014. Foundations of Software and System Performance Engineering:
Process, Performance Modeling, Requirements, Testing, Scalability, and Practice.
Addison-Wesley.

[4] Andre B Bondi and Razieh Saremi. 2021. Experience with Teaching Performance
Measurement and Testing in a Course on Functional Testing. In Companion of
the ACM/SPEC International Conference on Performance Engineering. 115-120.

[5] André Benjamin Bondi and Lu Xiao. 2023. Early Progress on Enhancing Existing
Software Engineering Courses to Cultivate Performance Awareness. In Compan-
ion of the 2023 ACM/SPEC International Conference on Performance Engineering.
345-349.

[6] Ermira Daka and Gordon Fraser. 2014. A survey on unit testing practices and

problems. In 2014 IEEE 25th International Symposium on Software Reliability

Engineering. IEEE, 201-211.

Senay Tuna Demirel and Resul Das. 2018. Software requirement analysis: Re-

search challenges and technical approaches. In 2018 6th International Symposium

[7

[

[o

[10

[11

(12]

[13

=
oot

[15

[16

(17

[18

(19]

™
=

[21

[22

(23]

[24

™~
2

&
&

Lu Xiao, Andre B. Bondi, Eman Abdullah AlOmar, and Yu Tao

on Digital Forensic and Security (ISDFS). IEEE, 1-6.

Peter] Denning. 1981. ACM president’s letter: performance analysis: experimen-
tal computer science as its best. Commun. ACM 24, 11 (1981), 725-727.

Torgeir Dingseyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. 2012.
A decade of agile methodologies: Towards explaining agile software development.
, 1213-1221 pages.

Robert F. Dugan. 2004. Performance Lies My Professor Told Me: The Case
for Teaching Software Performance Engineering to Undergraduates. In ACM

SIGSOFT Software Engineering Notes. 37-48.
Paul Ford. 2013. The Obamacare Website Didn’t Have to Fail: How to Do Better

Next Time. Bloomberg Businessweek (2013).

Vahid Garousi, Austen Rainer, Per Lauvas Jr, and Andrea Arcuri. 2020. Software-
testing education: A systematic literature mapping. Journal of Systems and
Software 165 (2020), 110570.

Boby George and Laurie Williams. 2004. A structured experiment of test-driven
development. Information and software Technology 46, 5 (2004), 337-342.
International Civil Aviation Organization (ICAO) 2021. DOC 9303, Machine
Readable Travel Documents Part 3: Specifications Common to all MRTDs Eighth
Edition, 2021. International Civil Aviation Organization (ICAO), Montreal, PQ.
Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649-678.
Vladimir Khorikov. 2020. Unit Testing Principles, Practices, and Patterns. Simon
and Schuster.

Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal opinion surveys. In
Guide to advanced empirical software engineering. Springer, 63-92.

Tim Mackinnon, Steve Freeman, and Philip Craig. 2000. Endo-testing: unit testing
with mock objects. Extreme programming examined (2000), 287-301.

E Michael Maximilien and Laurie Williams. 2003. Assessing test-driven devel-
opment at IBM. In 25th International Conference on Software Engineering, 2003.
Proceedings. IEEE, 564-569.

Harvey Maylor. 2001. Beyond the Gantt chart:: Project management moving on.
European management journal 19, 1 (2001), 92-100.

Daniel A. Menasce. 2002. Software, Performance, or Engineering?. In Proceedings
of the 3rd International Workshop on Software and Performance. 239-242.
Farzana Asad Mir and Ashly H Pinnington. 2014. Exploring the value of project
management: linking project management performance and project success.
International journal of project management 32, 2 (2014), 202-217.

Lisa O’Carroll and Angela Giuffrida. 2020. Home Office tells man, 101, his
parents must confirm ID. https://www.theguardian.com/uk-news/2020/feb/12/
home- office- tells-man-101- his- parents-must-confirm-id. [Online; accessed
07-October-2024].

Dhirendra Pandey, Ugrasen Suman, and A Kumar Ramani. 2010. An effective
requirement engineering process model for software development and require-
ments management. In 2010 International Conference on Advances in Recent Tech-
nologies in Communication and Computing. IEEE, 287-291.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in computers. Vol. 112. Elsevier, 275-378.

Per Runeson. 2006. A survey of unit testing practices. IEEE software 23, 4 (2006),
22-29.

Tom Seymour and Sara Hussein. 2014. The history of project management.
International Journal of Management & Information Systems (Online) 18, 4 (2014),
233-240.

Connie U Smith and Lloyd G Williams. 2002. Performance solutions: a practical
guide to creating responsive, scalable software. Vol. 1. Addison-Wesley Reading.
Connie U. Smith and Lloyd G. Williams. 2002. Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley.

Connie U Smith and Lloyd G Williams. 2003. Best practices for software perfor-
mance engineering. In Int. CMG Conference. 83-92.

Lloyd G. Williams and Connie U. Smith. 2015. Software Performance Antipatterns.
Workshop on Software and Performance (2015), 127-136.

Martin R Woodward. 1993. Mutation testing—its origin and evolution. Information
and Software Technology 35, 3 (1993), 163-169.

Shahed Zaman, Bram Adams, and Ahmed E Hassan. 2011. Security versus
performance bugs: a case study on firefox. In Proceedings of the 8th working
conference on mining software repositories. ACM, 93-102.

Shahed Zaman, Bram Adams, and Ahmed E Hassan. 2012. A qualitative study
on performance bugs. In 2012 9th IEEE working conference on mining software
repositories (MSR). IEEE, 199-208.

https://www.theguardian.com/uk-news/2020/feb/12/home-office-tells-man-101-his-parents-must-confirm-id
https://www.theguardian.com/uk-news/2020/feb/12/home-office-tells-man-101-his-parents-must-confirm-id

	Abstract
	1 Introduction
	2 MRTD Project Design
	2.1 Part 0: Project Planning
	2.2 Part 1: Requirements Analysis
	2.3 Part 2: Implementation and Unit Testing
	2.4 Part 3: Performance Measurement
	2.5 Part 4: Test Planning in (Hypothetical) Practice

	3 Preliminary Evaluation
	3.1 Evaluation Design
	3.2 Results

	4 Lessons Learned
	5 Conclusion
	References

