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Behind the Intent of Extract Method Refactoring
A Systematic Literature Review

Eman Abdullah AlOmar, Member, IEEE, Mohamed Wiem Mkaouer, Member, IEEE,
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Abstract—Background: Code refactoring is widely recognized as an essential software engineering practice to improve the
understandability and maintainability of source code. The Extract Method refactoring is considered as the “Swiss army knife” of
refactorings, as developers often apply it to improve their code quality, e.g., decompose long code fragments, reduce code complexity,
eliminate duplicated code, etc. In recent years, several studies attempted to recommend Extract Method refactorings allowing to
collect, analyze and reveal of actionable data-driven insights about refactoring practices within software projects.
Aim: In this paper, we aim at reviewing the current body of knowledge on existing Extract Method refactoring research and explore
their limitations and potential improvement opportunities for future research efforts. That is, Extract Method is considered one of the
most widely-used refactorings, but difficult to apply in practice as it involves low-level code changes such as statements, variables,
parameters, return types, etc. Hence, researchers and practitioners begin to be aware of the state-of-the-art and identify new research
opportunities in this context.
Method: We review the body of knowledge related to Extract Method refactoring in the form of a systematic literature review (SLR).
After compiling an initial pool of 1,367 papers, we conducted a systematic selection and our final pool included 83 primary studies. We
define three sets of research questions and systematically develop and refine a classification schema based on several criteria
including their methodology, applicability as well as their degree of automation.
Results: The results construct a catalog of 83 Extract Method approaches indicating that several techniques have been proposed in
the literature. Our results show that: (i) 38.6% of Extract Method refactoring studies primarily focus on addressing code clones; (ii)
Several of the Extract Method tools incorporate the developer’s involvement in the decision-making process when applying the method
extraction, and (iii) the existing benchmarks are heterogeneous and do not contain the same type of information, making standardizing
them for the purpose of benchmarking difficult.
Conclusions: Our study serves as an “index” to the body of knowledge in this area for researchers and practitioners in determining the
Extract Method refactoring approach that is most appropriate for their needs. Our findings also empower the community with
information to guide future refactoring tool development.

Index Terms—extract method, refactoring, quality
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1 INTRODUCTION1

R EFACTORING is the art of restructuring code to improve2

it without changing its external behavior [2]. One of the3

basic building blocks of refactoring is Extract Method, i.e.,4

the process of moving a fragment of code from an existing5

method into a new method with a name that explains its6

behavior. Method extraction is one of the main refactorings7

that were defined when this area was established [3], as8

it is a common response to the need of keeping methods9

concise and modular, and reducing the spread of shared10

responsibilities. Furthermore, Extract Method serves as a11

bridge to facilitate more complex refactorings [4]. Extract12

Method is widely employed by developers across various13

systems1. It represents approximately 49.6% of the total14
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1. Based on JDeodorant tool usage statistics:

”https://users.encs.concordia.ca/ nikolaos/”

refactorings recommended, as shown by JDeodorant [5], 15

one of popular tools that support Extract Method refactoring. 16

Moreover, open-source developers [6]–[13] and industry 17

professionals [14] consider it a critical refactoring operation. 18

The popularity of this refactoring is inherited from its 19

multifaceted utility that can be used for a myriad of 20

reasons, such as removal of duplicate code [15]–[18], 21

extraction of reusable methods [6], [19], [20], wrapping 22

older method signatures [6], decomposition of long or 23

complex structures [21]–[27], and support of code testability 24

[28], [29]. This wide variety of usage scenarios shows 25

why method extraction is considered the Swiss Army 26

knife of refactoring operations [30]. One of the typical 27

rationales behind method extraction is the removal of 28

duplicate code instances, which we can extract from a 29

real-world case. In this case, the committer has documented 30

the cleaning up of duplicate code. A closer inspection 31

of the code changes, illustrated in Figure 1, reveals 32

the elimination of code duplication in four methods 33

(i.e., getDummy(dataType byte), getNext(obj 34

Object, dataType byte, genericGetNext(obj 35

Object, dataType byte), and accumChild(child 36

List, o Object, dataType byte), where four 37

duplicates are extracted into one separate method (i.e., 38

genericGetNext(Object obj, byte dataType) 39

and then replaced with calls to the newly extracted method. 40
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Legend

Call to the Extracted Method

Project: Apache/pig 

Extracted Code

Commit ID: 7a516060213f5ac1fd559c124d2da0c0287757c7 

     Extracted Methods:

Refactoring Type: Extract Method Refactoring 

Apache / pig

Fig. 1: Sample example of Extract Method refactoring [1].
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Given its popularity and the diversity of its usage scenar-41

ios, modern Integrated Development Environments (IDEs),42

such as IntelliJ IDEA, PyCharm, Eclipse, and Visual Studio43

offer the Extract Method refactoring as a built-in feature,44

to support the correctness of code transformation and its45

behavior preservation. However, the built-in feature only46

supports the automation of the refactoring and not the rec-47

ommendation of opportunities to apply it. Therefore, various48

research projects focused on recommending method extrac-49

tion, by identifying refactoring opportunities, such as mak-50

ing code more reusable [6], [19], [20], removing duplicate51

code [15]–[18], improving testability through smaller test52

methods [28], [29], and segregating multiple functionalities53

[21]–[27]. Some of these studies have also implemented their54

solutions in tools and plugins.55

Despite the existence of built-in IDE features, and tools,56

several surveys report a general reluctance of developers57

to adopt them [6], [31]–[34]. In fact, surveys show that58

developers tend to manually extract methods despite the59

associated effort and error-proneness [32]. Existing research60

assumes that practitioners have a clear and common un-61

derstanding of the intent behind method extraction, since it62

focuses on improving the accuracy of identifying refactoring63

opportunities. Yet, a recent investigation of Stack Overflow64

posts, related to Extract Method, outlines how developers65

are asking how to perform refactoring, whether there is tool66

support, and how to avoid any side effects [30]. Bridging67

the gap between the state-of-the-art and the state-of-the-68

practice starts with understanding the intent that drives69

primary studies (PSs) to identify refactoring opportunities,70

and the extent to which they support its execution. In71

fact, cataloging these studies can facilitate their adoption72

by developers. Therefore, this paper systematically maps73

existing research in the recommendation of Extract Method74

refactoring from six main dimensions:75

• Intent: refers to the motivation behind the need for a76

method to be extracted, e.g., duplicate code removal.77

• Code Analysis: refers to the type of source code78

analysis, e.g., lexical and semantic code analysis.79

• Code Representation: refers to the underlying code80

representation being used during the extraction, e.g.,81

source code and AST.82

• Detection: refers to the automation degree to which a83

refactoring opportunity is detected, e.g., manual and84

fully-automated.85

• Execution: refers to the automation degree to which a86

refactoring opportunity is executed, e.g., manual and87

fully-automated88

• Validation Method: refers to the approaches that89

have been suggested for evaluation method extrac-90

tion, e.g., case study, and experiment.91

Another interesting investigation relates to the existing92

toolset implemented by researchers. We further classify93

them based on various characteristics, including their target94

language, availability, types of validation, etc.95

Since little is known about the existing literature on Ex-96

tract Method refactoring, this SLR serves as a comprehensive97

review of the body of knowledge on this topic to analyze98

existing techniques, and their associated programming lan-99

guages. The analysis of such a wide variety of methods100

leads to the development of categorization and reveals areas 101

of potential improvements. Therefore, when defining our 102

research questions, we follow established guidelines in sys- 103

tematic literature review studies [35]–[37]. The motivation 104

behind each question is as follows. 105

• RQ1: What approaches were considered by the PSs 106

to recommend Extract Method refactoring? We pose 107

this RQ to study current approaches for Extract 108

Method, and to get an overview of the existing ap- 109

proaches and their characteristics. Accordingly, for 110

each surveyed study, we collect information about 111

six main dimensions, together with any associated 112

tools. 113

• RQ2: What are the main characteristics of Ex- 114

tract Method recommendation tools? This RQ dives 115

deeper into the characteristics of the tools. It outlines 116

how they were implemented, maintained, and vali- 117

dated. 118

• RQ3: What are the datasets, and benchmarks 119

used for evaluating and validating Extract Method 120

recommendation tools? This RQ investigates the 121

datasets, and benchmarks, which refers to systems 122

and system artifacts, that are chosen and used for 123

evaluating and validating the extraction of methods, 124

and its results. 125

The main contributions of this paper are summarized as 126

follows: 127

• We conduct the first SLR to review Extract Method 128

refactoring, and classifying its corresponding studies 129

from various dimensions. 130

• We explore the existing toolset and benchmarks gen- 131

erated by these studies. We provide a one-stop-shop 132

website that links to all the tools and datasets that 133

we were able to recover from the studies2. 134

• We provide practical implications of our findings for 135

researchers, developers, tool builders, and educators. 136

The remainder of this paper is organized as follows: 137

Section 2 reviews existing studies related to systematic 138

reviews of refactoring. Section 3 outlines our empirical setup 139

in terms of search strategy, study selection, and data extrac- 140

tion. Section 4 discusses our findings, while the research 141

implications are discussed in Section 5. Section 6 captures 142

threats to the validity of our work, before concluding with 143

Section 7. 144

2 RELATED WORK 145

Zhang et al. [38] conducted a systematic literature review 146

(SLR) on 39 studies on bad code smells. They discussed 147

these studies based on various aspects including the goals 148

of the studies, the type of code smells, the approaches to 149

detect code smells, and finally, their refactoring opportu- 150

nities. Their main finding shows that Duplicated Code and 151

Long Method are among the most studied code smells. 152

Furthermore, they found that nearly 49% of the primary 153

studies aim to improve tools to detect code smells, while 154

only 15% focus on enhancing the current knowledge of 155

2. https://refactorings.github.io/em-slr/

https://refactorings.github.io/em-slr/
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TABLE 1: Refactoring-related SLRs in related work.

Study Year Focus No of PSs

Zhang et al. [38] 2011 Bad smells & refactoring 39
Abebe & Yoo [39] 2014 Refactoring trends & challenges 58
AlDallal [40] 2015 Refactoring identification 47
Singh & Kaur [41] 2017 Refactoring identification 238
AlDallal & Abdin [42] 2017 Impact of refactoring on quality 76
Mariani & Vergilio [43] 2017 Search-based refactoring 71
Baqais & Alshayeb [44] 2020 Automatic refactoring 41
Lacerda et al. [45] 2020 Code smells & refactoring 40
Abid et al. [46] 2020 Refactoring research efforts 3183
AlOmar et al. [47] 2021 Refactoring behavior preservation 28

refactoring code smells. Later, Abebe and Yoo [39] con-156

ducted another systematic review of 58 studies to reveal157

software refactoring trends, opportunities, and challenges.158

Their classification helped guide researchers to address the159

crucial issues in software refactoring. The authors pointed160

out that one of the gaps in refactoring research is the161

lack of a refactoring tool that provides custom refactoring162

for all specific user needs. After that, AlDallal [40] con-163

ducted an SLR of 47 PSs published on identifying refactor-164

ing opportunities in object-oriented code. AlDallal’s review165

classified PSs based on the considered refactoring scenar-166

ios, the approaches to determine refactoring candidates,167

and the datasets used in the existing empirical studies. In168

their study, Extract Method refactoring is used in refactor-169

ing identification approaches, i.e., quality metrics-oriented,170

precondition-oriented, clustering-oriented, graph-oriented,171

and code-slicing-oriented approaches. In the following SLR172

work by AlDallal and Abdin [42], they discussed 76 PSs173

and classified them based on refactoring quality attributes174

of object-oriented code. Their finding shows that the au-175

thors of the PSs studied the impact of the Extract Method176

refactoring on quality much more frequently, and was con-177

sidered by 11.8% or more of the PSs. Thereafter, Singh and178

Kaur [41] performed an SLR as an extension of AlDallal’s179

SLR [40] where they analyzed 238 research items in code180

smell detection and its refactoring opportunities to address181

some research questions left open in AlDallal’s SLR. Their182

finding reveals that Extract Method refactoring was used in183

metric-based detection techniques. Baqais and Alshayeb [44]184

conducted a systematic literature review on automated soft-185

ware refactoring. In their review, they analyzed 41 studies186

that propose or develop different automatic refactoring ap-187

proaches, finding that Extract Method used in precondition-188

based approaches.189

Other studies focus on search-based refactoring where190

search techniques are used to identify refactoring recom-191

mendations. Mariani and Vergilio [43] systematically re-192

viewed 71 studies and classified them based on the main el-193

ements of search-based refactoring, including artifacts used,194

encoding and algorithms used, search technique, metrics ad-195

dressed, available tools, and conducted evaluation. Mariani196

and Vergilio classified the selected PSs into five general cat-197

egories related to behavior preservation methods. These cat-198

egories involved (1) Opdyke’s function [48], (2) Cinnéide’s199

function [49], (3) domain-specific, (4) no evidence of be-200

havior preservation, and (5) do not mention the method.201

One of their main takeaways is the need for search-based202

approaches to explore the need to achieve fully automated203

approaches for refactoring. Lacerda et al. [45] performed a204

tertiary systematic literature review of 40 secondary studies 205

to identify the main observations and challenges on code 206

smell and refactoring. Their finding shows that code smells 207

and refactoring strongly correlate with quality attributes. 208

They concluded that few refactoring tools exist, and some 209

are obsolete. There is an opportunity to propose and im- 210

prove Extract Method refactoring tools, especially tools to 211

predict and evaluate the effects of refactoring. Abid et al. [46] 212

analyzed the results of 3,183 primary studies on refactoring 213

covering the last three decades to offer a comprehensive 214

literature review of existing refactoring research studies. The 215

authors derived a taxonomy focused on five key aspects of 216

refactoring including refactoring lifecycle, artifacts affected 217

by refactoring, refactoring objectives, refactoring techniques, 218

and refactoring evaluation. They highlight the need to 219

validate refactoring techniques and tools using industrial 220

systems to bridge the gap between academic research and 221

industry’s research needs. 222

AlOmar et al. [47] conducted a systematic literature 223

mapping to identify behavior preservation approaches in 224

software refactoring. Their key finding reveals the vari- 225

ety of formalisms and techniques, developing automatic 226

refactoring safety tools and performing a manual source 227

code analysis. However, researchers are biased toward using 228

precondition-based and testing-based approaches although 229

there are other techniques (e.g., graph-based) that have 230

some potential and perhaps they are effective for specific 231

problems that have not yet been well explored. Further, 232

the authors found that Extract Method refactoring is one 233

of the most widely used refactoring operations in PSs to 234

demonstrate behavior preservation. 235

Table 1 summarizes existing SLRs on software refac- 236

toring. Overall, we observe that all the above-mentioned 237

studies focus on either (1) detecting refactoring opportuni- 238

ties through the optimization of structural metrics or the 239

identification of design and code defects, (2) automating 240

the generation and recommendation of the most optimal 241

set of refactorings to improve the system’s design while 242

minimizing the refactoring effort, so that developers still 243

can recognize their own design, or (3) demonstrating com- 244

prehensive literature review of existing refactoring research 245

studies and the concept of behavior preservation. Our work 246

differs from these studies since our SLR focuses primarily 247

on collecting and summarizing specifically Extract Method 248

refactoring techniques, the “Swiss army knife of refactor- 249

ings” [6], [7] with an in-depth analysis. To the best of our 250

knowledge, no previous work has conducted a comprehen- 251

sive SLR pertaining to Extract Method techniques in software 252

refactoring. 253

3 STUDY DESIGN 254

This SLR aims to explore the landscape of approaches and 255

tools that recommend the Extract Method refactoring. Based 256

on established guidelines [35], [36], [50]–[52], we performed 257

the SLR in three main phases: planning, reviewing, and 258

reporting the review. Creating a protocol is a major step 259

when conducting an SLR [35]. The planning phase involves 260

identifying the need for a review and the development of 261

a review protocol (described in Section 3.1). The review 262

phase encompasses the selection of primary studies, the 263
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ScienceDirect Scopus Springer Web of  Science ACM IEEE

Digital library selection
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1367
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Stage 5

remove duplicates exclude articles 
(title & abstract)

exclude articles 
(full text) snowballingidentify potentially

relevant articles
final set of

articles

35

Wiley

Fig. 2: Literature search process.

assessment of the study, data extraction, and data synthesis264

(described in Sections 3.2 and 3.4). Finally, the reporting265

phase emphasizes recording the review, which involves266

observing documents, and presenting the obtained results267

(described in Section 4).268

3.1 Survey Planning269

The planning phase highlights the research motivation that270

leads to the development of research questions.271

3.1.1 Identifying the need for a Systematic Literature Re-272

view273

The absence of comprehensive and current secondary re-274

search that delves into the Extract Method underscores the275

need for a comprehensive Systematic Literature Review276

(SLR). While there have been SLRs in the field of refac-277

toring, their focus remains confined to the automation of278

refactoring, the impact of refactoring on quality, detection279

of code smells and trends, challenges, and application of280

refactoring, which none specializes in Extract Method. Thus,281

the core motivation behind carrying out this SLR is to:282

• Collect the body of knowledge of Extract Method283

refactoring approaches in the research literature.284

• Combine and analyze the reported findings regard-285

ing Extract Method approaches.286

• Identify open issues in existing research.287

3.1.2 Specifying the research questions288

During the process of conducting an SLR, it is of paramount289

importance to pinpoint pertinent research questions that290

have the potential to provide clear answers. We identified291

three such research questions:292

• RQ1: What approaches were considered by the PSs293

to recommend Extract Method refactoring?294

• RQ2: What are the main characteristics of Extract 295

Method recommendation tools? 296

• RQ3: What are the datasets, and benchmarks used 297

for evaluating and validating Extract Method rec- 298

ommendation tools? 299

3.2 Primary Studies Selection 300

In alignment with the research questions, we extracted the 301

initial terms that encapsulated the research topic. Referring 302

to previous reviews of the literature within the field, we 303

developed search keywords incorporating synonyms and 304

related terms. 305

3.2.1 Search strategy 306

Similar to Fernandes et al. [53], we performed an automatic 307

search in seven electronic data sources to find relevant 308

studies, including ScienceDirect3, Scopus4, Springer Link5, 309

Web of Science6, ACM Digital Library7, IEEE Xplore8, and 310

Wiley9. TextBox 1 shows our search string in these search 311

engines. 312

The strategy to construct our search keywords is as 313

follows: 314

• Derive the main terms from research questions and 315

terms considered in the relevant papers. 316

• Include alternative spellings for major terms. 317

• Combine possible synonyms and spellings of the 318

main terms using Boolean OR operators and then 319

3. https://www.sciencedirect.com/
4. https://www.scopus.com
5. https://link.springer.com/
6. https://webofknowledge.com/
7. https://dl.acm.org/
8. https://ieeexplore.ieee.org/
9. https://onlinelibrary.wiley.com/
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((extract method OR extract-method OR method extract*
OR method-extract* OR extract function OR extract-
function OR function extract* OR function-extract* OR split
method OR split-method OR method split* OR method-
split* OR split function OR split-function OR function
split* OR function-split* OR separat* method OR separat*-
method OR method separat* OR method-separat* OR sep-
arat* function OR separate-function OR function separat*
OR function-separat*) AND (long method OR long func-
tion OR large method OR large function OR duplicat* code
OR code duplicat* OR code clone OR code bad smell OR
code smell OR bad smell OR antipattern OR anti-pattern
OR design defect OR design flaw) AND (refactor*) AND
(approach OR tool OR technique))

TextBox 1: Search string.

Fig. 3: Word cloud of paper titles of primary studies.

combine the main terms using the Boolean AND320

operators.321

These search keywords are applied to titles, abstracts,322

and keywords. To verify the validity of the search string,323

we manually double-checked a few articles from each of324

the seven digital libraries, similar to Garousi and Mäntylä325

[54]. Also, during the review of this manuscript, reviewers326

pointed out a set of keywords whose their incorporation327

helped with revealing more studies that were finally in-328

cluded. To get a high-level picture of the covered topics,329

we generated a word cloud of paper titles, as depicted in330

Figure 3.331

3.2.2 Study selection332

To collect the PSs, we adapted the search process of AlDallal333

and Abdin [42] [42] and conducted a five-phased process.334

Literature publications were eliminated based on the de-335

fined inclusion and exclusion criteria to filter our irrelevant336

articles.337

Inclusion criteria (IC):338

The selected studies must satisfy all the following inclu-339

sion criteria:340

• The article must be published in peer-reviewed 341

venues before August 26, 2023. 342

• The article must report an approach to recommend 343

Extract Method refactoring. 344

Exclusion criteria (EC): 345

Papers are excluded if satisfying any of the exclusion 346

criteria, as follows: 347

• The study is a position paper, abstract, blog, editorial, 348

keynote, tutorial, book, patent, or panel discussion. 349

• The study is not written in English. 350

Regarding the second inclusion criteria, we only consid- 351

ered PSs that reported an approach to recommend Extract 352

Method refactoring. We excluded any other articles that pro- 353

vided a broad explanation of the concept of Extract Method 354

refactoring. 355

Stage 1: Identification of potentially relevant articles. 356

In this first stage of the selection process, shown in Figure 2, 357

we searched seven digital libraries for potentially related ar- 358

ticles. Our criteria included applying our predefined search 359

string to the title, abstract, and keyword fields. The results 360

of this search were not limited to specific venues. Searching 361

through the seven digital libraries resulted in a total of 362

1,367 publications in the literature. We performed the initial 363

screening of the articles to reduce the possibility of including 364

irrelevant articles. 365

Stage 2: Removal of duplicates. By merging the results 366

obtained from the search platforms, we remove duplicate 367

publications, books, and reports, which resulted in a total of 368

943 literature publications. 369

Stage 3: Exclusion of articles based on title and abstract. 370

It is important to consider the abstracts at this stage because 371

the titles of some articles could be misleading. Inclusion and 372

exclusion rules were applied at this stage to all retrieved 373

studies. This elimination process reduced our set of results 374

to 114 publications in the literature. When a determination 375

cannot be reached solely based on the title and abstracts, the 376

studies are promoted to the next stage. 377

Stage 4: Exclusion of articles based on full text. To 378

obtain the relevant PSs, the identified papers in Stage 3 379

were reviewed. Literature reviews were eliminated based on 380

defined exclusion and inclusion rules. This process resulted 381

in a total of 66 literature publications that were included in 382

this study. 383

Stage 5: Snowballing. To maximize the search coverage 384

of all relevant papers, we also performed the snowballing 385

technique [36] on 66 papers already in the pool. Using snow- 386

balling, we extracted 1,958 references from the reference 387

section of the studies, and extracted studies citing the 66 388

selected studies. We combined the results and filtered out 389

duplicate records, along with books, and non-peer reviewed 390

studies. Then, we compare this set with 943 primary studies 391

obtained from Stage 2 to further refine the studies. This step 392

resulted in the addition of 17 additional papers, where some 393

of them did not explicitly mention the recommendation of 394

Extract Method in their titles and abstracts. The updated the 395

pool size increased to 83. 396

3.3 Study Quality Assessment 397

To assess the quality of PSs, we followed the guidelines 398

proposed in [35], [55], [56]. We chose 3 quality assessment 399



TRANSACTIONS ON SOFTWARE ENGINEERING 7

questions that could be applicable to all PSs, and each PS is400

evaluated against three questions within three dimensions401

of study quality (i.e., objective, method, and coverage of402

the studies). The corresponding questions are: Q1) Does the403

study’s primary objective explicitly focus on the Extract Method404

refactoring?; Q2) Does the study include structured and prefer-405

ably automatic or semi-automatic Extract Method approaches?;406

and Q3) Does the study sufficiently describe the Extract Method407

technique, algorithm, and evaluation?. These questions are408

implicitly used in the above refinement stages. If a PS passes409

these quality criteria, we believe that a PS has valuable410

information for SLR. The answer to each of these questions411

is either “Yes”, “Partially”, or “No” with numerical values of412

1, 0.5, or 0, respectively. If the questions did not apply to the413

context of a PS, they were not evaluated. The overall quality414

of each PS is calculated by summing up the scores of the415

applicable questions. In general, all the published articles in416

the accepted literature scored well on the quality assessment417

questions.418

3.4 Data Extraction, Categorization, and Analysis419

To determine the attribute(s) of the classification dimen-420

sion [57], [58], we screened the full texts of the PSs and421

identified the attribute(s) of that dimension. We used at-422

tribute(s) generalization and refinement to derive the final423

map, similar to [54]. Specifically, we analyzed the PSs to424

create a comprehensive high-level list of themes, extracted425

from a thematic analysis, based on guidelines provided by426

Cruzes et al. [59]. Thematic analysis is among the most used427

methods in Software Engineering literature [6], [60], [61], for428

identifying and recording patterns (or “themes”) within a429

collection of descriptive labels, which we call “codes”. For430

each PS, we proceeded with the analysis using the following431

steps: i) Initial reading of the PSs; ii) Generating initial codes432

(i.e., labels) for each PS; iii) Translating codes into themes,433

sub-themes, and higher-order themes; iv) Reviewing the434

themes to find opportunities for merging; v) Defining and435

naming the final themes, and creating a model of higher-436

order themes and their underlying evidence.437

Inspired by previous studies [62], [63], we initiated our438

study by adopting existing taxonomies to categorize PSs.439

To carry out the manual coding of PSs, we used a spread-440

sheet application equipped with tagging capabilities. This441

spreadsheet provided the annotators with the following in-442

formation: (1) the paper title and study link, (2) why Extract443

Method is performed (i.e., intent), (3) the type of source444

code analysis (i.e., code analysis), (4) the underlying code445

representation used during the extraction (i.e., representa-446

tion), (5) the automation degree of detecting the refactoring447

opportunity, (6) the automation degree of executing the448

recommended refactoring, and (7) the type of experiments449

carried out to validate the method. When creating our cus-450

tomized classification dimensions, annotators could select451

from preexisting tags in a drop-down menu or create a new452

one if none of the existing tags fits the specific case (i.e., each453

annotator had the flexibility to assign one or more tagging454

items).455

The above-mentioned steps were performed indepen-456

dently by two authors. One author performed the labeling457

of PSs independently from the other author responsible for458

reviewing the currently drafted themes. At the end of each 459

iteration, the authors met and refined the themes to reach 460

a consensus. It is important to note that the approach is 461

not a single-step process. As the codes were analyzed, some 462

of the first cycle codes were subsumed by other codes, rela- 463

beled, or dropped altogether. As the two authors progressed 464

in translating the themes, there was some reorganization, 465

refinement, and reclassification of the data into different 466

or new codes. For example, we aggregated, into “Intent”, 467

the preliminary categories “duplicated code”, “code clone”, 468

“long method”, and “separation of concerns”. We used the 469

thematic analysis technique to address RQ1 and RQ2. We 470

read the selected PSs to answer the research questions after 471

extracting the classification dimensions. We then extracted 472

the standard information from each article, similar to [57], 473

[58], and included additional attributes relevant to our study 474

in the data extraction form. 475

3.5 Final Primary Studies Selection 476

The research method discussed in Section 3 resulted in 83 477

relevant PSs. The main venues for these relevant PSs are 478

presented in Table 2. The PSs were published in 55 different 479

sources, including journals, conferences, and workshops. 480

The list specifically includes 12 journals, 37 conferences, and 481

8 workshops. The first relevant article was published in a 482

journal in 1998, whereas the most recent one was published 483

in 2023. The number of literary papers published in jour- 484

nals, conferences, and workshops combined, is presented in 485

Figure 4. This figure illustrates a trend that began in 2017, 486

resulting in a higher number of studies conducted between 487

2017 and 2023 compared to the total of studies published 488

before 2017. This rising interest in this refactoring incites 489

further research to improve its adoption in practice. 490
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Fig. 4: Distribution of primary studies by year.

4 RESULTS 491

This section reports and discusses the results of our study. 492

4.1 What approaches were considered by the PSs to 493

recommend Extract Method refactoring? 494

A detailed overview of the Extract Method refactoring ap- 495

proaches reported by the 83 PSs is shown in Table 3. Upon 496

analyzing the PSs, we extract comprehensive high-level 497
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TABLE 2: Publication venues.

Publication Venue PSs

Symposium on Software Reusability [64]
International Conference on Software Engineering [8], [65]–[69]
Conference on Software Maintenance and Reengineering [70]
Journal of Systems and Software [71]–[73]
Asia-Pacific Software Engineering Conference [21], [74]
Workshop on Refactoring Tools [75]–[79]
International Conference on Program Comprehension [80]–[82]
Agile Processes in Software Engineering and Extreme Programming [83]
Transactions on Software Engineering [10], [84]–[86]
International Conference on Software Quality [87], [88]
International Symposium on Software Reliability Engineering [89]
International Conference on Software Maintenance and Evolution [90], [91]
International Workshop on Refactoring [15]
IEEE Access [92]
Symposium on the Foundations of Software Engineering [14]
Innovations in Software Engineering Conference [23]
International Conference on Automated Software Engineering [93], [94]
Information and Software Technology [95]–[97]
Science of Computer Programming [16]
Conference on Software: Theory and Practice [98]
International Conference on the Art, Science, and Engineering of Programming [99]
Computer Software and Applications Conference [100]
International Journal of Software Engineering and Knowledge Engineering [101]
International Conference on Software Engineering and Knowledge Engineering [102]
Automated Software Engineering Journal [103]
Machine Learning with Applications [104]
Empirical Software Engineering [105]
International Requirements Engineering Conference [106]
Algorithms [107]
International Conference on Software Analysis, Evolution and Reengineering [108]–[110]
International Federation for Information Processing [111]
Conference on Object-oriented programming systems and applications [11], [112], [113]
IEICE Transactions on Information and Systems [114]
International Conference on Computer and Communications [115]
IASTED Conf. on Software Engineering and Applications [116]
ACM SIGSOFT Software Engineering Notes [117]
OOPSLA workshop on Eclipse technology eXchange [118]
International Conference on Product Focused Software Process Improvement [119]
Journal of Software Maintenance and Evolution: Research and Practice [18]
International Conference on Soft Computing Techniques and Engineering Application [120]
International Conference on Electrical Engineering/Electronics, Computer [121]
Telecommunications and Information Technology
International conference on Aspect-oriented software development [122]
Conference on software engineering and advanced applications [9]
Annual Computer Software and Applications Conference [123]
International Conference on Predictive Models and Data Analytics in Software Engineering [124]
Transactions on Software Engineering and Methodology [125]
International Conference on Software Maintenance [126]
Conference on Software Maintenance, Reengineering, and Reverse Engineering [127]
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing [128]
International Workshop on Software Clones [129], [130]
Workshop on Software Evolution through Transformations [131]
Symposium on Principles of Programming Languages [132]
ACM SIGPLAN workshop on Partial evaluation and program manipulation [133], [134]
Working Conference on Reverse Engineering [135]
Seminar on Advanced Techniques Tools for Software Evolution [136]

categories grouping the techniques used to implement the498

Extract Method refactoring. These PSs are based on three499

main categories: (1) Code Clone, Long Method, and Separation500

of Concerns (SoC). Figure 6 shows the percentages of Extract501

Method studies clustered by the detected intent. The Code502

Clone category had the highest number of PSs, with a ratio of503

38.6%. The Separation of Concerns (SoC) category accounted504

for 34.9%, with Long Method representing 26.5%. Notably,505

these categories show minimal variation within the range of506

26.5% to 38.6%. It should be noted that most of the Extract507

Method refactoring tools (49%) are primarily designed for508

the purpose of removing code clones. In the rest of this509

section, we provide a more in-depth analysis of each of these510

categories along with the corresponding PSs.511

Category #1: Code Clone. This category refers to studies512

that are designed to recommend Extract Method refactor-513

ing opportunities to eliminate Code Clone design defects.514

Refactoring Code Clone consists of taking a code fragment515

and moving it to create a new method while replacing all516

instances of that fragment with a call to this newly created517

method. It is worth noting that some PSs [15], [18], [67]–[69],518

[72], [82], [86], [90], [92], [96], [109], [110], [116], [117], [119],519

[120], [123], [126]–[137] utilized the concept of Code Clone520

to consider some or all types of clones (i.e., Type 1, Type 2,521

Type 3, Type 4), and others [83], [93], [97] utilized Duplicate522

Code by considering Type 1 clone.523

Komondoor and Horwitz [132] proposed an algorithm524

to select statements that are worth extracting while ensur-525

ing semantics preservation. The authors identify conditions526

based on control and data dependencies, and the algorithm 527

suggests moving the selected statements when the condi- 528

tions hold. CloRT [135] is developed to take into account 529

the shared elements of cloned methods while utilizing the 530

strategy design pattern to differentiate them. A dynamic 531

pattern matching algorithm is used to identify the semantic 532

distinctions between clones and their translation in terms of 533

programming language entities. Komondoor and Horwitz 534

[82] propose a semantic preserving algorithm for extract- 535

ing difficult sets of statements, including the detection of 536

duplicated fragments and extracting them into procedures, 537

to make them extractable, achieving ideal results in more 538

than 70% of the difficult cases. Aries [18], [116], [117] is an 539

Extract Method refactoring tool based on code clone analysis 540

on top of their previous tool CCShaper [119], enabling 541

users to select which clones to remove by characterizing 542

code clones. Juillerat and Hirsbrunner [131] propose an 543

algorithm for Extract Method refactoring to remove code 544

clone. The algorithm first constructs the abstract syntax 545

tree of Java code, then generates a list of tokens for clone 546

identification, and finally identify clone that obeys certain 547

constraints for Extract Method refactoring. Wrangler [134] 548

is a hybrid approach based on tokens and AST to detect 549

code clones in Erlang/OTP programs automatically. The 550

proposed clone detection approach is capable of reporting 551

code fragments that are syntactically identical and support 552

clone removal using function extraction. HaRe [133] is de- 553

signed for Haskell to detect and eliminate code duplication 554

for function extraction. Choi et al. [130] extract code clones 555

for refactoring by combining clone metrics. Their observa- 556

tion is that the combinations of these metrics can identify 557

refactorable clone classes with higher precision. CeDAR [96] 558

is an Eclipse plug-in that sends the results of clone detection 559

data to Eclipse, and the IDE receives the information and 560

determines which clones can be refactored by specifying the 561

clones with specific properties to be refactored. This tool re- 562

portedly detects considerably more clone groups compared 563

to open-source artifacts. FTMPAT [129] introduces a method 564

that relies on slice-based cohesion metrics to merge software 565

clones. The method starts by taking two similar methods 566

as input and first detect syntactic differences between them 567

using AST differencing. Subsequently, it identifies pairs of 568

code fragments within these methods, to serve as suit- 569

able candidates for Extract Method. Then, the identified 570

candidates are evaluated and prioritized using slice-based 571

cohesion metrics. SPAPE [72], [120] is a near-miss clone 572

extraction method applied to ten large-scale open-source 573

software and reportedly can extract more clones than this 574

software. SPAPE was developed initially in C programming 575

language to refactor near-miss clones automatically. The tool 576

utilizes a symbolic program execution to transform data 577

and identify duplicated code to ensure cohesiveness for 578

programmers. 579

Krishnan et al. [126], [127] propose an algorithm for 580

refactoring of software clones with two objectives: maximize 581

the number of mapped statements and, at the same time, 582

minimize the number of differences between the mapped 583

statements. The authors compared the proposed technique 584

with CeDAR and concluded that their approach can find a 585

significantly larger number of refactorable clones. In other 586

studies [67], [68], [86], JDeodorant has been extended to 587
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TABLE 3: Related work in recommending the Extract Method refactoring opportunities.

Study Year Intent Code Analysis Code Representation Detection Execution Validation Method

Lakhotia & Deprez [95] 1998 Long Method Semantic Graphs Manual Suggest Alternatives Proof of Concept
Balazinska et al. [135] 1999 Code Clone Syntactic AST Fully automated Fully automated Proof of Concept
Komondoor & Horwitz [132] 2000 Code Clone Semantic Graphs Manual Fully automated Proof of Concept
Maruyama [64] 2001 Separation of Concerns Semantic Graphs Manual Choose Candidates Proof of Concept
Komondoor & Horwitz [82] 2003 Code Clone Semantic Graphs Manual Fully automated Proof of Concept
Ettinger & Verbaere [122] 2004 Separation of Concerns Semantic Graphs Manual Fully automated Proof of Concept
Higo et al. [119] 2004 Code Clone Lexical Tokens Fully automated Choose Candidates Case Study
Higo et al. [116] 2004 Code Clone Semantic Graphs Fully automated Fully automated Case Study
Higo et al. [117] 2005 Code Clone Lexical Tokens Fully automated Execute on Approval Case Study
Higo et al. [18] 2008 Code Clone Textual Source Code Fully automated Execute on Approval Case Study
O’Connor et al. [118] 2005 Separation of Concerns Syntactic AST Semi-automated Suggest Alternatives Proof of Concept
Juillerat & Hirsbrunner [131] 2006 Code Clone Syntactic AST Fully automated Fully automated Proof of Concept
Juillerat & Hirsbrunner [78] 2007 Separation of Concerns Syntactic AST Manual Fully automated Proof of Concept
Vittek et al. [111] 2007 Separation of Concerns Syntactic AST Manual User Input Proof of Concept
Corbat et al. [112] 2007 Separation of Concerns Syntactic AST Manual Choose Candidates Proof of Concept
Murphy-Hill & Black [8] 2008 Separation of Concerns Textual Source Code Manual Choose Candidates Experiment
Abadi et al. [79] 2008 Separation of Concerns Textual Source Code Manual Fully automated Case Study
Abadi et al. [77] 2009 Separation of Concerns Textual Source Code Manual Fully automated Case Study
Tsantalis & Chatzigeorgiou [70] 2009 Long Method Textual Source Code Fully automated Suggest Alternatives Experiment
Tsantalis & Chatzigeorgiou [71] 2011 Long Method Textual Source Code Fully automated Suggest Alternatives Experiment
Yang et al. [21] 2009 Long Method Textual Source Code Manual Suggest Alternatives Case Study
Li & Thompson [134] 2009 Code Clone Hybrids AST & Tokens Manual Suggest Alternatives Case Study
Brown & Thompson [133] 2010 Code Clone Hybrids AST & Tokens Manual Suggest Alternatives Case Study
Kanemitsu et al. [75] 2011 Separation of Concerns Semantic Graphs Manual Suggest Alternatives Experiment
Meananeatra et al. [121] 2011 Long Method Syntactic Metrics Manual Suggest Alternatives Proof of Concept
Choi et al. [130] 2011 Code Clone Lexical Tokens Fully automated Manual Case Study
Sharma [76] 2012 Separation of Concerns Semantic Graphs Manual Fully automated Proof of Concept
Cousot et al. [113] 2012 Separation of Concerns Textual Source Code Manual Fully automated Proof of Concept
Tairas & Gray [96] 2012 Code Clone Syntactic AST Fully automated Choose Candidates Experiment
Kaya & Fawcett [102] 2013 Long Method Textual Source Code Fully automated Manual Experiment
Goto et al. [129] 2013 Code Clone Syntactic AST Manual Fully automated Case Study
Bian et al. [72] 2013 Code Clone Hybrids AST & Graphs Manual Fully automated Experiment
Bian et al. [120] 2014 Code Clone Syntactic Metrics Fully automated Manual Experiment
Krishnan & Tsantalis [126] 2013 Code Clone Textual Source Code Fully automated User Input Experiment
Krishnan & Tsantalis [127] 2014 Code Clone Hybrids AST & Graphs Fully automated User Input Experiment
Tsantalis et al. [86] 2015 Code Clone Hybrids AST & Source Code & Tokens Fully automated User Input Experiment
Mazinanian et al. [67] 2016 Code Clone Hybrids AST & Source Code & Tokens Fully automated User Input Experiment
Tsantalis et al. [68] 2017 Code Clone Hybrids AST & Source Code & Tokens Fully automated User Input Experiment
Silva et al. [80] 2014 Separation of Concerns Textual Source Code Fully automated Suggest Alternatives Experiment
Silva et al. [98] 2015 Separation of Concerns Textual Source Code Fully automated Suggest Alternatives Experiment
Fontana et al. [83] 2015 Code Clone Hybrids AST & Source Code Fully automated Suggest Alternatives Experiment
Meng et al. [69] 2015 Code Clone Syntactic AST Fully automated Fully automated Experiment
Charalampidou et al. [124] 2015 Long Method Syntactic Metrics Fully automated Fully automated Case Study
Charalampidou et al. [10] 2016 Long Method Syntactic AST & Metrics Fully automated Fully automated Case Study
Charalampidou et al. [9] 2018 Long Method Syntactic Metrics Fully automated Fully automated Case Study
Haas & Hummel [87] 2016 Long Method Hybrids Source Code & Graphs Manual Suggest Alternatives Experiment
Haas & Hummel [88] 2017 Long Method Hybrids Source Code & Graphs Manual Choose Candidates Experiment
Xu et al. [89] 2017 Separation of Concerns Textual Source Code Fully automated Choose Candidates Experiment
Imazato et al. [100] 2017 Separation of Concerns Textual Source Code Fully automated Manual Experiment
Kaya & Fawcett [101] 2017 Long Method Semantic Graphs Fully automated Fully automated Experiment
Maruyama & Hayashi [66] 2017 Separation of Concerns Textual Source Code Manual Choose Candidates Proof of Concept
Xu et al. [115] 2017 Long Method Syntactic Metrics Fully automated Manual Experiment
Chen et al. [123] 2017 Code Clone Syntactic AST Manual Fully automated Case Study
Ettinger & Tyszberowicz [110] 2016 Code Clone Textual Source Code Manual Fully automated Proof of Concept
Ettinger et al. [109] 2017 Code Clone Semantic Graphs Manual Fully automated Proof of Concept
Meananeatra et al. [114] 2018 Long Method Hybrids AST & Graphs Manual Execute on Approval Case Study
Choi et al. [74] 2018 Long Method Syntactic Metrics Fully automated Manual Experiment
Yue et al. [90] 2018 Code Clone Syntactic AST Fully automated Manual Experiment
Vidal et al. [125] 2018 Long Method Textual Source Code Fully automated Choose Candidates Case Study
Yoshida et al. [15] 2019 Code Clone Hybrids AST & Tokens Fully automated Choose Candidates Experiment
Shin [128] 2019 Code Clone Syntactic AST Fully automated Fully automated Case Study
Barrs & Oprescu [136] 2019 Code Clone Hybrids AST & Graphs Fully automated Manual Experiment
Antezana [65] 2019 Long Method Textual Source Code Manual Choose Candidates Experiment
Alcocer et al. [16] 2020 Long Method Textual Source Code Manual Choose Candidates Experiment
Nyamawe et al. [106] 2019 Separation of Concerns Textual Text Fully automated Manual Experiment
Nyamawe et al. [105] 2020 Separation of Concerns Textual Text Fully automated Manual Experiment
Krasniqi & Cleland-Huang [108] 2020 Separation of Concerns Textual Text Fully automated Manual Experiment
Abid et al. [85] 2020 Separation of Concerns Textual Source Code Manual User Input Experiment
Sheneamer [92] 2020 Code Clone Hybrids AST & Graphs & Tokens Fully automated Manual Experiment
Aniche et al. [84] 2020 Separation of Concerns Syntactic Metrics Fully automated Manual Experiment
Van der Leij et al. [14] 2021 Separation of Concerns Syntactic Metrics Fully automated Manual Experiment
Sagar et al. [107] 2021 Separation of Concerns Hybrids Text & Metrics Fully automated Manual Experiment
AlOmar et al. [103] 2022 Separation of Concerns Textual Text Fully automated Manual Experiment
Nyamawe [104] 2022 Separation of Concerns Textual Text Fully automated Manual Experiment
Shahidi et al. [73] 2022 Long Method Hybrids Graphs & Metrics Fully automated Fully automated Experiment
Tiwari & Joshi [23] 2022 Long Method Semantic Graphs Fully automated Manual Experiment
Fernandes et al. [94] 2022 Long Method Syntactic Metrics Fully automated Execute on Approval Experiment
Fernandes et al. [99] 2022 Long Method Syntactic Metrics Fully automated Execute on Approval Experiment
AlOmar et al. [93] 2022 Code Clone Syntactic Metrics Fully automated Execute on Approval Experiment
AlOmar et al. [97] 2023 Code Clone Syntactic Metrics Fully automated Execute on Approval Experiment
Cui et al. [81] 2023 Separation of Concerns Semantic Graphs Fully automated Manual Experiment
Thy et al. [11] 2023 Separation of Concerns Textual Source Code Fully automated Fully automated Case Study
Palit et al. [91] 2023 Separation of Concerns Semantic Graphs Fully automated Manual Experiment

identify Extract Method opportunities for Code Clone extrac-588

tion. The tool automatically assesses whether a pair of clones589

can be safely refactored while preserving the behavior. The590

authors were able to increase the percentage of refactorable591

clones to 36% on the same clone dataset used by Tairas592

and Gray [96]. Duplicated Code Refactoring Advisor (DCRA)593

[83] is released to select and suggest the best refactorings of594

duplicated code, aiming to reduce the human involvement 595

during Duplicated Code refactoring procedures. The tool used 596

NiCad [138] for clone detection, which adds information 597

characterizing every clone, e.g., the clone’s location in the 598

class hierarchy, its size, and type. Next, through the refac- 599

toring advisor, the tool suggests the refactorings to remove 600

the clones and provide a ranking of their quality. RASE 601
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[69] is a clone removal tool that can apply combinations of602

six refactorings. Extract Method is one of these refactroings603

used to extract common code guided by systematic edits.604

PRI [123] employs refactoring pattern templates and traces605

cloned code fragments across revisions. PRI takes as input606

the results from a clone detector, and then automatically607

identifies refactored regions through refactoring pattern608

rules in the subsequent revisions, and summarizes refactor-609

ing changes across revisions. Ettinger et al. [109], [110]610

contribute to the automation of type-3 clone elimination611

by preparation of non-contiguous code for extraction in a612

new method. CREC [90] is a learning-based approach that613

proposes specific clones through feature extraction. The tool614

initially refactors R-clones (historically refactored) and NR-615

clones (typically not refactored). This process is carried out616

using 34 features that analyze the characteristics of each617

clone to classify them. The implementation of CREC is done618

in three stages: preparation of the clone data, training, and619

testing, which allows it to provide the programmer with an620

accurate refactoring recommendation.621

Yoshida et al. [15] released an Extract Method refactoring622

tool to be used as a proactive clone recommendation system.623

The process is meant to be implemented as an Eclipse plug-624

in to keep track of changes in the code. This tool suggests625

changes in real-time versus at the end of the project. This626

routine makes the code fresh in the programmer’s mind,627

allowing for more efficient progress. This is accomplished by628

actively tracking the user’s work in Eclipse and suggesting629

edits. Shin [128] proposes a refactoring method for finding630

duplicate code used in branch statements and refactoring631

them by extracting common parts. The results of case stud-632

ies with unskilled developers yielded an average of 10%633

reduction in source code. CloneRefactor [136] detects634

code clones that are suitable for refactoring, based on their635

context and scope. Their results indicate that about 40% of636

code duplication can be refactored by method extraction,637

while other clones require other refactoring techniques. She-638

neamer [92] automatically extracts features from detected639

code clones and trains models to inform programmers of640

which type to refactor. Their approach categorizes refac-641

tored clones as distinct classes and develops a model to642

recognize the various types of refactored clones and those643

that are anonymous. AntiCopyPaster [93], [97] is an644

IntelliJ IDEA plugin, implemented to detect and refactor645

duplicate code interactively as soon as a duplicate is created.646

The plugin only recommends the extraction of a duplicate647

only when it is worth it, i.e., the plugin treats whether a given648

duplicate code shall be extracted as a binary classification649

problem. This classification is performed using a CNN,650

trained using a dataset of 9,471 extract method refactorings651

of duplicate code collected from 13 open-source projects.652

Category #2: Long Method. This category refers by653

studies that are designed to identify Extract Method refactor-654

ing opportunities to eliminate Long Method design defects.655

Long Method is a long and complex method that hinders656

the readability, reusability, and maintainability of the code.657

As a solution, refactoring Long Method was proposed by658

extracting independent and cohesive fragments from long659

methods as new, short, and reusable methods [9], [10], [16],660

[21], [23], [65], [70], [71], [73], [74], [87], [88], [94], [95], [99],661

[101], [102], [114], [115], [121], [124], [125], [139].662

Lakhotia and Deprez [95] proposed a transformation 663

tuck that restructures code and reorganizes unclear large 664

fragments into small cohesive functions. Tuck [95] decon- 665

structs large functions into small functions by restructuring 666

programs. Wedge, split, and fold are the three parts that 667

makeup tuck. Then, statements of meaningful functions 668

in a wedge are split and folded into a new function. 669

JDeodorant [70], [71] encompassed identifying specific 670

Extract Method refactoring opportunities. This tool automati- 671

cally identifies Extract Method opportunities for Long Method 672

to suggest code improvement instead of requiring a set of 673

statements from the programmer. Yang et al. identified frag- 674

ments to be extracted from long methods. Their approach is 675

implemented as a prototype called AutoMed [21]. The eval- 676

uation results suggested that the approach may reduce the 677

refactoring cost by 40%. Meananeatra et al. [121] proposed 678

an approach to select refactorings dependent on data flow 679

and control flow graphs of software metrics. The method 680

procedure includes calculating metrics, filter refactorings, 681

computing maintainability for candidate refactorings, then 682

outlining Extract Method refactorings with the highest main- 683

tainability. The approach has been reported to accurately 684

resolve Long Method issues by suggesting refactoring tech- 685

niques for the Extract Method, replacing temp with the 686

query, and decomposing condition. Kaya and Fawcett [102] 687

automate selecting program refactoring fragments to resolve 688

defects with the Long Method. The paper goes over the iden- 689

tification process of code fragments based on a placement 690

tree. This procedure outlines each node in the tree with 691

variable reference counts to implement an effective process. 692

Charalampidou et al. [9], [124] conduct a case study to 693

evaluate several cohesion, coupling, and size metrics to 694

serve as indicators of the existence of Long Method, and 695

integrate these metrics into a multiple logistic regression 696

model, enabling the prediction of whether a method should 697

be refactored or extracted. The tool SEMI [10] ranks refac- 698

toring opportunities based on their extraction ability. This 699

paper outlines Long Method, to be implemented within a 700

method to identify refactoring opportunities. The SEMI ap- 701

proach determines which parts of code are cohesive between 702

statements. This can minimize the size of each method and 703

create clear resulting methods that are increasingly single- 704

responsibility principle compliant. This tool was validated 705

with industrial and comparative case studies. 706

Hass and Hummel [87], [88] introduce refactoring and 707

orders, each with a scoring function developed to reduce 708

complexity and improve the way users read the code. 709

This open-source software filters out invalid Extract Method 710

refactorings and then ranks to obtain different suggestions 711

with the previously mentioned scoring function. Kaya and 712

Fawcett [101] strive to implement Extract Method refactoring 713

and urge developers to utilize understandable implemen- 714

tation and modular structures so that source code quality 715

will not decrease throughout a project’s development. The 716

goal is to refactor without requiring the user to select a code 717

section. The approach searches for opportunities to refactor 718

by declaring variables and regions of code that are fully 719

extractable. The user can visualize the available refactoring 720

options and choose which to apply without relying on 721

a foreign code base. LLPM [115] combines method-level 722

software metrics applying a log-linear probabilistic model 723
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Fig. 5: The relationship among the intent, code analysis, representation, detection, execution, and validation method of the
Extract Method refactoring.

for accustomed refactorings. This application was tested724

with refactorings of real-world Extract Method applications725

allowing the researchers to obtain parameter sets that cap-726

ture the reason behind such refactorings. This analysis was727

completed by identifying code to refactor and prioritizing728

various method groups to refactor. The proposed model op-729

timizes parameters that maximize the probability of the col-730

lected dataset to refactor Long Method bad smells accurately.731

LMR [114] is an Extract Method refactoring approach that732

utilizes program analysis and code metrics by implementing733

refactoring enabling conditions. This approach uses two734

guidelines for practical refactoring sets: code analyzability735

level and statement number. Initially, LMR is applied to a736

Java application core package, showing that Long Method737

bad smell can be eliminated in code without removing738

behavior or making it more challenging to analyze. Choi739

et al. [74] investigates change metrics and Extract Method740

throughout two studies. The relationship results deduce741

a clear relationship between change metrics and Extract742

Method. Product and change metrics must be available743

to accurately recommend refactorings for Extract Method.744

The main contributions highlight metric change differences745

between extracted and not-extracted entities. Vidal et al.746

[125] proposed Bandago, that is implemented on top of747

JSpIRIT, an Eclipse plugin for identifying and prioritizing748

code smells in Java. Bandago performs a heuristic search749

using a simulated annealing algorithm [139] that repeatedly750

applies the Extract Method refactoring. Their findings reveal751

that the tool can automatically fix more than 60% of Brain752

Methods, and when comparing the performance of Bandago753

with JDeodorant, the authors found that other types of754

code smells are also fixed after applying the Extract Method755

refactoring suggestions.756

TOAD [16], [65] searches specific portions of the source757

code that include the developer’s original code selection and758

meet ideal conditions for the Extract Method. The approach759

operates during the workflow of refactorings and chooses760

fragments of code with correct syntax and outlined necessi- 761

ties. The tool explicitly recommends auto-refactoring alter- 762

natives when the user selects a piece of code and requests 763

refactoring options. Overall, TOAD reduced failed attempts 764

significantly at a lower cognitive cost for Extract Method 765

refactoring. Shahidi et al. [73] automatically identified 766

and refactored the Long Method code smells in Java code 767

using advanced graph analysis techniques. Their proposed 768

approach was evaluated in five different Java projects. The 769

findings reveal the applicability of the proposed method 770

in establishing the single responsibility principle with a 771

21% improvement. In another study, Tiwari and Joshi in- 772

troduced Segmentation [23] that identifies Extract Method 773

opportunities concentrating on achieving higher perfor- 774

mance with fewer suggestions. Compared with other tools, 775

Segmentation outperformed F-measure approaches and 776

suggested that it evinced high precision regarding small 777

methods and Long Method in opportunities with the Extract 778

Method. Empirical validations were applied to six open- 779

source code applications to assess beneficial suggestions. 780

Segmentation improves comparable recall and precision 781

while identifying extract method refactorings. LiveRef 782

[94], [99] is a tool implemented for live refactoring Java 783

code. It works to resolve problems with long feedback 784

loops that allow code to be maintainable and readable. The 785

environment provides efficient refactoring suggestions by 786

diminishing the time needed to apply, recommend, and 787

identify the refactoring loop. The plugin for Java Intel- 788

liJ IDEA implemented a live refactoring environment that 789

automatically applies Extract Method. The tool results in 790

improvements in the quality of the code along with faster 791

programming solutions. 792

Category #3: Separation of Concerns. The Separation 793

of Concerns (SoC) category refers to studies segregating 794

methods into multiple sub-methods based on their behavior 795

so the code becomes less complex and effectively reused 796

[140]. One of the main limitations of these studies [8], 797
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[11], [14], [64], [66], [75]–[78], [80], [81], [84], [85], [89],798

[91], [98], [100], [103]–[108], [111], [111]–[113], [118], [122]799

is the absence of any context related to the application800

of refactorings, i.e., it is not clear how developers would801

identify the need to apply these refactoring, e.g., improving802

design metrics or removing design defects. Maruyama [64]803

solves the burden of manual refactoring by implementing804

automatic support when initiated by the programmer. It can805

be used by (1) selecting a fragment of code, (2) choosing806

a method, and (3) naming it. A new method is created807

from the parts of code from an existing method through808

block-based slicing. This mechanism is based on data-flow809

and control-flow analysis, so the user will not have to test810

the refactored fragment. Nate [122] performs the Extract811

Method refactoring by extracting the slice into a new method,812

replacing it with a method call. For each extracted statement,813

the tool determines whether to remove it from the original814

method or to keep it there because it is still relevant. SDAR815

[118] is a plug-in for Eclipse that detects and applies local816

and global refactoring through star diagrams. The tool offers817

Extract Method refactoring options that improve code and818

aid development opportunities and enables the refactoring819

option for every node in the diagram that passes the JDT820

Extract Method conditions. Juillerat and Hirsbrunner [78]821

construct an algorithm to recognize the arguments and822

outcomes of an extraction method. The implementation is an823

Eclipse plugin and uses the Java Development Tools library824

provided by Eclipse.825

Xrefactory [111] allows the application of Extract826

Method refactoring using a back-mapping preprocessor to827

perform at the level of compilers in addition to other828

refactorings such as renaming, adding, and moving method829

parameters. Although this tool only involves limited refac-830

toring, the quality of the analysis indicates the quality of831

the whole refactoring tool. Corbat et al. [112] developed832

a plug-in for the Eclipse Ruby development tools IDE833

since automated refactorings are not included in Ruby.834

Dynamic typing of Ruby makes implementing refactorings835

very difficult since it can be impossible for an IDE to836

determine an object type; therefore, Extract Method refac-837

toring was applied loosely adapted from JDT. The tool838

RefactoringAnnotation [8] for Extract Method refactor-839

ing allows the user to find solutions to coding errors. The840

annotations depend on what code section the programmer841

suggests and applies relevant refactoring recommendations.842

This is done automatically by implementing an arrow to843

be drawn on parameters and return values. The study con-844

cluded that speed, accuracy, and user satisfaction increase845

with the application of new tools. Usability recommenda-846

tions are implemented, and the goal is to cultivate a new847

generation of tools that are user-friendly for programmers.848

Abadi et al. [79] re-approach the refactoring Rubicon by849

providing more general support for method extraction. The850

authors performed a case study to convert a Java servlet to851

use the model-view-controller pattern. Abadi et al. [77]852

introduces the foundation of fine slicing, a method that853

computes program slices. These slices can be transformed854

with the data removal and control dependencies as their sur-855

rounding code is extractable/executable. Cousot et al. [113]856

highlight the problem of automatically inferring contracts857

such as validity, safety, completeness, and generality with858

method extraction. The proposed solution was to create two 859

fast and capable tools that interact in an environment while 860

maintaining precision. The practical solution is comprised 861

of forward/backward methods that are iterative. Silva et 862

al. [80] used a similarity-based approach to recommend 863

automated Extract Method refactoring opportunities that 864

hide structural dependencies rarely used by the remaining 865

statements in the original method. Their evaluation on a 866

sample of 81 Extract Method opportunities achieved preci- 867

sion and recall rates close to 50% when detecting refactoring 868

instances. In another study, Silva et al. [98] extended their 869

work by designing an Eclipse plugin called JExtract that 870

automatically identified, ranked, and applied refactorings 871

upon request. The tool begins by generating all possibilities 872

of Extract Method for each method and then ranks these 873

methods between dependencies in the code. 874

REM [11] proposed an automated Extract Method built 875

on top of the IntelliJ IDEA plugin for Rust. Results reveal 876

that REM can extract a larger class of feature-rich code 877

fragments into semantically correct functions, can reproduce 878

method extractions performed manually by human devel- 879

opers, and is efficient enough to be used in interactive devel- 880

opment. ReAF [75] is a prototype tool that handles all Java 881

language grammar. Initially, the user inputs source files to 882

form a software system that the tool will visualize and build 883

a procedural PDG for every method in the input. The tool 884

can only handle Java source code but can be developed to 885

handle other languages. Sharma [76] propose Extract Method 886

candidates based on the data and the structure dependency 887

graph. Their suggestions were obtained by eliminating the 888

longest dependency edge in the graph. GEMS [89] is an 889

Extract Method refactoring recommender that extracts struc- 890

tural and functional features related to complexity, cohesion, 891

and coupling. It then uses this information to identify code 892

fragments from a given source method that can be extracted. 893

This method was tested comparatively with JDeodorant 894

[70], [71], JExtract [80], [98] and SEMI [10] to highlight 895

the superiority of this tool. The Eclipse plug-in was cre- 896

ated to support software reliability with method extraction. 897

GEMS validates potential code for a method and assigns a 898

“goodness” score to it and recommends refactoring with 899

Extract Method. Imazato et al. [100] propose a technique 900

to find refactoring opportunities in the code using ma- 901

chine learning. The history of software development was 902

analyzed as the basis of this tool to automatically suggest 903

Extract Method refactoring in the latest source code. This 904

technique utilizes machine learning to identify potential 905

refactoring opportunities. It consists of two phases: learning 906

and predicting. The learning phase involves analyzing the 907

characteristics of past cases and criteria, while the predicting 908

phase involves detecting the location of possible refactor- 909

ings. This design has the advantage of reducing the risk of 910

overlooking refactorings. PostponableRefactoring [66] 911

tool checks the code’s conditions and reports each defined 912

error. These normal, fatal, and recoverable errors alert users 913

when to apply the refactoring. Each error is refactorable 914

since code may be rewritten altogether, but knowing which 915

segments need work proves useful to programmers, espe- 916

cially throughout large projects. Nyamawe et al. [105], 917

[106] recommended Extract Method refactorings based on the 918

history of previously requested features, applied refactor- 919
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ing, and information about code smells. This learning-based920

approach is evaluated using a set of open-source projects921

with an F-measure of 70% to recommend refactorings. Kras-922

niqi and Cleland-Huang [108] develop a model first to923

detect refactoring commit messages from non-refactoring924

commits, then differentiate between 12 refactoring types.925

Their findings showed that SVM has an F-measure of 15%926

when predicting Extract Method refactorings. Abid et al. [85]927

highlights security throughout refactoring while attempting928

to improve various quality attributes. The proposed idea929

emphasizes security metrics and balancing code qualities930

through multi-objective refactoring. Compared with other931

approaches, this tool performs above existing approaches932

to improve the security of systems at a low cost while933

not sacrificing the quality of code. The paper determined934

that developers must prioritize security and other important935

qualities when establishing refactoring systems. Aniche et936

al. [84] use a machine learning approach to predict refac-937

torings using code, process, and ownership metrics. The938

resulting models predict 20 different refactorings at the939

class, method, and variable levels. Their model achieved an940

accuracy of 84% when predicting Extract Method refactoring941

using Random Forest and Neural Network. Another experi-942

ment that predicts refactorings was conducted using quality943

metrics.944

Van der Leij et al. [14] explore the recommendation of945

the Extract Method refactoring at ING. They observed that946

machine learning models could recommend Extract Method947

refactorings with high accuracy, and the user study reveals948

that ING experts tend to agree with most of the model’s949

recommendations. Sagar et al. [107] compare commit950

messages and source code metrics to predict Extract Method951

refactoring. Their main findings show that the Random For-952

est trained with commit messages or code metrics resulted953

in the best average accuracy of around 60%. AlOmar et al.954

[103] formulate the prediction of refactorings as a multiclass955

classification problem, i.e., classifying refactoring commits956

into six method-level refactoring operations, applying nine957

supervised machine learning algorithms. The prediction958

results for Extract Method ranged from 63% to 93% in terms959

of F-measure. To predict Extract Method refactorings, Nya-960

mawe [104] employs a binary classifier and recommends re-961

quired refactorings with a multi-label classifier. This is done962

with the help of traditional refactoring detectors and com-963

mits message analysis to detect applied refactorings through964

machine learning. REMS [81] recommend Extract Method965

refactoring opportunities via mining multi-view represen-966

tations from code property graph. The results show that967

their approach outperforms four state-of-the-art refactoring968

tools, including GEMS [89], JExtract [80], [98], SEMI [10],969

and JDeodorant [70], [71] in effectiveness and usefulness.970

Palit et al. [91] employ a self-supervised autoencoder to971

acquire a representation of source code generated by a pre-972

trained large language model for Extract Method refactoring.973

Their experiments show that their approach outperforms974

the state-of-the-art by 30% in terms of the F1 score.975

Next, we elaborate on the code analysis and code rep-976

resentation techniques as they were mentioned in their977

primary studies.978

Code Analysis. The nature of a code can be represented979

by the design properties of its specification. These properties980

can be decomposed into: (1) Textual: no transformation or 981

normalization is done to the source code, and generally the 982

raw source code or textual information is used directly in 983

the detection process; (2) Structural: changes the source code 984

into a series of lexical “tokens” using a compiler-style lexical 985

analysis; (3) Syntactic: employs a parser to transform source 986

programs into parse trees or abstract syntax trees (ASTs). 987

These can then be examined using either tree matching 988

or structural metrics to detect code smells; (4) Semantic: 989

captures the control and data flow of the program. It utilizes 990

static program analysis to give more exact data than syn- 991

tactic similarity. It generates a Program Dependence Graph 992

(PDG), encompassing Control Flow Graphs (CFG) and Call 993

Graphs (CG); and (5) Hybrids: refers to techniques that use a 994

combination of characteristics of other approaches. 995

Code Representation. It spotlights the internal represen- 996

tation of the artifacts to be refactored. We extract compre- 997

hensive categories grouping the representation types used 998

to implement the Extract Method refactoring. These PSs are 999

based on six main categories: (1) Source Code, (2) Abstract 1000

Syntax Tree (AST), (3) Graphs, (4) Metrics, (5) Tokens, and (6) 1001

Text. Figure 7 illustrates the percentages of types of internal 1002

representation that the PSs used to make a decision on the 1003

extraction of the method. As can be seen, 31.3% of the PSs 1004

use Source Code to recommend Extract Method refactoring. 1005

Furthermore, 22.9% of the approaches support the execution 1006

of the Extract Method refactoring using AST. The categories 1007

Graphs, Metrics, Tokens, and Text had the least number of PSs, 1008

with a ratio of 18.1%, 10.8%, 9.6%, and 7.2%, respectively. 1009

We notice how the 3 Intent clusters have used all cate- 1010

gories of Code Analysis, along with its associated types of 1011

Code Representation. The Code Clone cluster, despite being the 1012

largest in terms of studies, has the least number of papers 1013

that require developers to manually input the code to be 1014

refactored. This demonstrates how the existence of code 1015

clone detection tools has been supporting the refactoring 1016

studies since their early days. With the advancement in 1017

IDE support, studies shifted to automating the identification 1018

of refactoring opportunities, primarily by matching code 1019

smell patterns, then by mining patterns previously executed 1020

similar refactorings. 1021

As for automating the recommendation, 53% of the stud- 1022

ies opted to include the developer in the loop. Incorporation 1023

can be in the form of asking for information to complete the 1024

transformation, such as requesting the name of the extracted 1025

method [141], [142]. 61% of the studies provide multiple 1026

candidate solutions, either for the developer to choose from 1027

(e.g., [88], [96]), or to also suggest other similar alternatives 1028

(e.g., [70], [133]). 1029

For the Validation, 16% of mostly earlier studies hand- 1030

crafted their own synthetic examples to assess the correct- 1031

ness of their solutions. The need for a more developer- 1032

centric assessment triggered validation to perform case 1033

studies. Evaluating the recommendation performance with 1034

developers provides a more grounded basis for judgement, 1035

at the expense of relatively specific setting that does not 1036

necessarily generalize. The rise of information retrieval in 1037

general, along with refactoring mining in particular, allowed 1038

studies to benefit from mined refactorings to assess accuracy 1039

and conduct comparative analysis. 1040
Figure 5 provides detailed mappings between our six 1041

dimensions. We can observe that Code Clone is the most pop- 1042
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Fig. 7: Percentage of Extract Method studies, clustered by
code representation types.

ular intent-driving method extraction with a ratio of 38.6%,1043

followed up by Separation of Concerns, taking 34.9%, and1044

finally Long Method represented by 26.5%. Interestingly, this1045

is not matched in terms of the toolset, as the highest ratio1046

of tools goes to Code Clone with 49%, then Long Method and1047

Separation of Concerns with 26.5% and 24.5%, respectively.1048

Such observation has caught our attention particularly as1049

Separation of Concerns is the only category that relies on1050

all existing detection techniques and has its own unique1051

one, i.e., Evolutionary-based, and yet, there is a lack of1052

concretizing this amount of research into practical tools.1053

As for code representation, it is unsurprising that Code is1054

the most popular representation to identify need-to-refactor1055

code fragments. This is being inherited from how research1056

couples refactoring to a natural response to code smells,1057

e.g., Long Method. So, metric-based detection rules are the1058

most popular for detecting code smells [143], and so they1059

become a go-to in the context of Extract Method. Finally,1060

existing studies offer a wide variety of static and dynamic1061

techniques to execute the refactoring. They mainly rely on1062

variants techniques of code slicing and graph analysis.1063

Summary. 38.6% of Extract Method refactoring studies
are primarily addressing code clones. These studies com-
monly employ textual and structural code analysis as their
internal representation to decide on method extraction.
This representation is typically based on source code or
Abstract Syntax Trees (AST).

1064

4.2 What are the main characteristics of Extract 1065

Method recommendation tools? 1066

To help select an appropriate Extract Method refactoring tool, 1067

we report in Table 4 the following main characteristics that 1068

can be considered to make an informed decision about tools 1069

usage: 1070

• Language: Indicates the programming language the 1071

tool supports. 1072

• Number of Metric: Indicates the number of software 1073

metrics used by the tool. 1074

• Interface: Indicates what IDE/user interface the tool 1075

supports. 1076

• Usage Guide?: Indicates the availability of instructions 1077

on how to use the tool. 1078

• Tool Link: Points to the online source code repository. 1079

• Last Update: Indicates whether the tool has been con- 1080

sistently updated/maintained since its development. 1081

Among the 83 primary studies, we identified 37 Extract 1082

Method refactoring tools. Table 4 provides the results for 1083

each of the 37 tools. We report any of these characteristics 1084

as ‘Unknown’ in the table if we cannot locate the needed 1085

information and ‘N/A’ if the information is not applicable 1086

to the study. It is evident from the table that the majority of 1087

Extract Method tools are intended to recommend refactoring 1088

exclusively for Java-based systems. As for metrics, most 1089

studies only mention quality attributes without the names 1090

of the metrics. Next, in terms of how developers interact 1091

with these tools, we found that most of the tools are in 1092

the form of IDE plugins, i.e., Eclipse or IntelliJ, and user 1093

interface or command line. Regarding tool availability, we 1094

searched for a link to the tool website or binaries. In case 1095

the link is absent or no longer functional, we contacted the 1096

publication’s authors. From these 37 Extract Method tools, 1097

we could only locate 18 tools. Figure 8 depicts a timeline 1098

of releasing 37 Extract Method refactoring tools, in which 1099

18 tools are made publicly available online by the research 1100

community. There has been a considerable increase in the 1101

number of tools in the last two decades. The earlier tools 1102

were responsive to the challenge of ensuring the correctness 1103

of the transformation and its behavior preservation, given 1104

the lack of IDE support. The evaluation of these tools 1105

was mainly handcrafted, using fewer examples as a proof 1106

of concept. When IDEs started supporting the execution 1107

of code extraction, studies shifted toward automating the 1108

identification of refactoring opportunities while including 1109

developers in the tool design and evaluation. The rise of 1110

refactoring mining tools has enabled another dimension 1111

for studies to leverage previously performed extractions 1112

as ground truth for predictive modeling, or for comparison 1113

baselines between existing solutions. Finally, recent tech- 1114

niques have taken a proactive fashion to immediately rec- 1115

ommend refactoring, as soon as the opportunity is detected, 1116

in order to facilitate the adoption of the proposed change. 1117

Several approaches have different automation support 1118

for detection and correction of Extract Method refactoring 1119

identification. In the rest of this section, we analyze the fol- 1120

lowing level of automation for the Extract Method refactoring 1121

tools. 1122

Category #1: Manual approach refers to using code 1123

inspection to detect or correct code smells. 1124
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TABLE 4: Characteristics of Extract Method refactoring tools.

Tool Language No of Metric Interface Usage Guide? Tool Link Last Update

Tuck [95] Unknown Unknown Unknown No Unknown Unknown
CloRT[135] Java N/A Unknown No Unknown Unknown
Nate [122] Java Unknown Eclipse No Unknown Unknown
CCShaper [119] Java 6 Command line No Unknown Unknown
Aries [18], [116], [117] Java 6 GUI-based No Unknown Unknown
SDAR [118] Java N/A Eclipse No Unknown Unknown
Unnamed [78] Java N/A Eclipse No Unknown Unknown
Xrefactory [111] C++ N/A Unknown Yes [144] 2007
Unnamed [112] Ruby N/A Eclipse Yes [145] 2012
RefactoringAnnotation [8] Java Unknown Eclipse No Unknown Unknown
JDeodorant [67], [68], [70], [71], [86], [126], [127] Java 3 IntelliJ / Eclipse Yes [5] 2019
AutoMed [21] Java 10 Unknown No Unknown Unknown
Wrangler [134] Erlang/OTP N/A GUI-based / Command line Yes [146] 2023
HaRe [133] Haskell 98 N/A GUI-based / Command line Yes [147] 2017
ReAF [75] Java Unknown Unknown No Unknown Unknown
Unnamed [113] C# Unknown Visual Studio extension No Unknown Unknown
CeDAR [96] Java 2 Eclipse No Unknown Unknown
FTMPAT [129] Java 3 Eclipse No Unknown Unknown
SPAPE [72] Procedural / Java Unknown Unknown No Unknown Unknown
JExtract [80], [98] Java Unknown Eclipse Yes [148] 2016
DCRA [83] Java 1 Unknown No Unknown Unknown
RASE [69] Java N/A Eclipse Yes [149] 2015
SEMI [10] Java 5 GUI-based / Command line Yes [150] 2016
GEMS [89] Java 48 Eclipse Yes [151] 2017
PostponableRefactoring [66] Java N/A Eclipse Yes [152] 2018
LLPM [115] Java 4 Unknown No Unknown Unknown
PRI [123] Java N/A Eclipse No Unknown Unknown
LMR [114] Java 5 Eclipse No Unknown Unknown
CREC [90] Java N/A Eclipse Yes [153] 2018
Bandago [125] Java 4 Eclipse No Unknown Unknown
Unnamed [15] Java N/A Eclipse No [154] 2019
Unnamed [128] Java N/A Unknown No Unknown Unknown
CloneRefactor [136] Java N/A Command line No [155] 2020
TOAD [16], [65] Pharo N/A Pharo Yes [156] 2019
Segmentation [23] Java 2 Eclipse No [157] 2022
LiveRef [94], [99] Java 20 IntelliJ Yes [158] 2022
AntiCopyPaster [93], [97] Java 78 IntelliJ Yes [159] 2023
REM [11] Rust N/A IntelliJ Yes [160] 2023

Category #2: Full automated approach refers to provid-1125

ing explicit full tool support to the users without human1126

intervention.1127

Category #3: Semi-automated approach for the semi-1128

automated approaches, it is broken down into four cate-1129

gories:1130

• Suggest Alternatives: refers to the tool that is capable1131

of carrying out the task automatically and proposing1132

options or alternatives to the user. Nevertheless, the1133

user must still manually select and implement the1134

suggestion;1135

• Choose Candidates: refers to the tool that proposes1136

alternative tasks to be done and requires the user to1137

confirm the selection;1138

• Execute on Approval: refers to the tool that displays the1139

activity that is about to be carried out and requests1140

the user’s permission. The user can either accept the1141

activity in its entirety or cancel it;1142

• User Input: refers to the tool that asks the user to1143

select the code fragment as input to the tool.1144

Regarding the automaticity in the Extract Method refactor-1145

ing, we observe that most tools perform fully automated or1146

semi-automatic refactoring tools. For example, the tool sug-1147

gests an Extract Method refactoring for the code clone frag-1148

ments, and the developer decides whether to apply or reject1149

that refactoring. It is essential to highlight that automated1150

refactoring alone cannot eliminate the need for manual1151

verification after applying refactoring or manual refactoring1152

in particular scenarios. That explains why many Extract1153

Method refactoring tools support semi-automatic refactoring.1154

Furthermore, we observe that some tools utilize existing 1155

code smell detectors, and others integrate the detection of 1156

code smell and the execution of refactoring in the same tool. 1157

The latter eliminates the need to set up the dependency on 1158

a separate Long Method splitter or Code Clone detector. 1159

Figure 9 depicts the software metrics used by the 14 1160

Extract Method refactoring tools (the white color indicates 1161

that the tool computes the respective metric, while black 1162

signifies that the tool does not). It is worth noting that 1163

we only include metrics that the PSs report. Some PSs 1164

indicated the usage of metrics without specifying the metric 1165

names. As can be seen, 14 of the Extract Method refac- 1166

toring tools, namely, Aries, AntiCopyPaster, AutoMed, 1167

Bandago, CeDAR, DCRA, FTMPAT, GEMS, JDeodorant, 1168

LLPM, LMR, LiveRef, SEMI, and Segmentation, indicated 1169

the metrics. These metrics relate to cohesion, coupling, 1170

complexity, size, keyword, and clone pairs. We found that 1171

‘TotalLinesOfCode’, ‘CyclomaticComplexity’, ‘LackOfCohe- 1172

sionOfMethod’, ‘NumberOfMethods’, ‘NumberOfParame- 1173

ters’, and ‘NumberOfAssignedVariables’ are common met- 1174

rics utilized by most of the tools. It should be noted that 1175

some of these metrics are used to assess quality improve- 1176

ment in refactoring research [161], [162]. 1177

Table 5 shows the quantitative, qualitative, comparative, 1178

and correctness data analysis of Extract Method refactoring 1179

tools. It is evident from the table that there is a noticeable 1180

absence of validation-related information from both quan- 1181

titative and qualitative perspectives. While the quantitative 1182

analysis seems to be the default experimentation by most 1183

of the primary studies, only 34% reported the correctness of 1184

their tools through the standard performance metrics (e.g., 1185
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precision, recall). On the other hand, 26% of tools were1186

purely evaluated qualitatively. Only 15% of the tools un-1187

dergo both quantitative and qualitative analysis. Moreover,1188

JDeodorant and JExtract are widely used by 23% of1189

the studies for comparative analysis. To summarize, most1190

studies rely on quantitative analysis or qualitative analy-1191

sis to create oracles for their recommendation. Therefore,1192

they need to go beyond the correctness and investigate1193

the usefulness of their recommendations from the devel-1194

oper’s standpoint, which was done only for 15% of the1195

tools. Additionally, many studies do not position their rec-1196

ommendations properly with respect to existing literature1197

reviews through proper comparative analysis. Regarding1198

correctness, most tools do not indicate details around their1199

accuracy. From the set of 37 Extract Method tools, only 111200

tools provide information about the tool’s accuracy.1201

Summary. A total of 37 Extract Method refactoring tools
have been developed, with 49% designed for refactoring
code clones and 24% intended to break down lengthy meth-
ods. Among these tools, approximately 58% are developed
as plugins, 9% are command-line tools, and 9% feature
graphical user interfaces (GUIs). Several of these tools
incorporate the developer’s involvement in the decision-
making process when applying the method extraction.

1202

4.3 What are the datasets, and benchmarks used for1203

evaluating and validating Extract Method recommenda-1204

tion tools?1205

We investigate the datasets, and benchmarks that are used1206

to evaluate and validate Extract Method refactoring studies.1207

We follow the same extraction procedure as described in1208

Abgaz et al. [163]. A summary of the findings is illustrated1209

in Tables 6, 7, and 8.1210

Codebases. The evaluation of proposed Extract Method1211

studies depends on the availability of datasets and bench-1212

marking data, which is a relatively unexplored area. We1213

identified that most of the studies used a dataset created by1214

the paper’s authors, corresponding to 86.74%. Only 13.25%1215

reused datasets from previous studies. The selection of ap- 1216

plications for experimentation is based on the availability of 1217

the source code, and the Extract Method tools. Due to the ab- 1218

sence of agreed-upon evaluation benchmarks, studies have 1219

generally used custom evaluations. Generally, PSs have 1220

mostly employed relatively small- or medium-scale open- 1221

source applications, typically containing less than 225,000 1222

lines of code. Examples of open-source systems utilized by 1223

some PSs with the intent of Long Method and Separation of 1224

Concerns include JHotDraw and JUnit. Ant and JFreeChart 1225

are becoming popular Java systems for Extract Method eval- 1226

uation when extracting code clone10. 1227

Validation Methods. Various structured evaluation ap- 1228

proaches have been suggested, such as proof of concepts, 1229

case studies, and experiments. Proof of concept involves 1230

demonstrating how the identification process works with 1231

the help of examples. Case studies examine the migration 1232

process in depth by looking at relevant cases, using one or 1233

multiple projects as a target. Experiments involve selecting 1234

the chosen codebases and then experimentally evaluating 1235

them using metrics such as coupling, cohesion, complexity, 1236

and code size, or comparing them with other tools. It should 1237

be noted that validation methods are reported as they were 1238

mentioned in their primary studies. 1239

Previous studies have classified validation methods into 1240

proof of concepts, case studies, and experiments [163], [164]. In 1241

our study, experiment-based validation is the most widely 1242

used method, with 59.03% of the studies that use it [8], [10], 1243

[14]–[16], [23], [65], [67]–[75], [80], [81], [83]–[94], [96]–[101], 1244

[101], [103]–[108], [115], [121], [126], [127], [134], [134]. Some 1245

of these studies even combined a survey or user study with 1246

their experiment (e.g., [93], [94], [97], [99], [125]). The case 1247

study is the second most dominant method, with 21.68% of 1248

the papers applying it to evaluate their methods [9], [11], 1249

[18], [21], [77], [79], [114], [116], [117], [123]–[125], [128]– 1250

[130], [133], [137]. Proof of concept method was also adopted 1251

by 19.27% [64], [76], [78], [82], [95], [109]–[113], [118], [122], 1252

[131], [132], [135]. It is evident that experiment-based vali- 1253

dation is becoming more popular. This is likely due to recent 1254

10. Due to space constraints, we report project names if the number
of projects considered is less than or equal to 15.
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TABLE 5: Quantitative, qualitative, and comparative analysis of Extract Method refactoring tools.

Tool Quantitative Qualitative Comparative Correctness

Tuck [95] Unknown No No Unknown
CloRT[135] Unknown Unknown Unknown Unknown
Nate [122] Unknown No No Unknown
CCShaper [119] 1 project No No Unknown
Aries [18], [116], [117] 1 project No No Unknown
SDAR [118] Unknown No No Unknown
Xrefactory [111] Unknown No No Unknown
Unnamed [112] Unknown No No Unknown
RefactoringAnnotation [8] 5 projects w/ 16 developers No Unknown
JDeodorant [70], [71] 1 project w/ 1 developer No Precision: 33.3% - 100%

Recall: 25% - 100 %
Precision (AVG): 51%
Recall (AVG): 69%

JDeodorant [67], [68], [86] 9 projects No w/ CeDAR Accuracy: increase to 36%
JDeodorant [126], [127] 7 projects No w/ CeDAR Accuracy: increase to 83%
AutoMed [21] 1 project No No Accuracy: 3.57% - 92.86%
Wrangler [134] 3 projects No No Unknown
HaRe [133] 13 programs No No Unknown
ReAF [75] 1 project w/ 14 developers w/ JDeodorant Unknown
Unnamed [113] Unknown w/ 4 authors No Unknown
CeDAR [96] 9 projects No w/ Aries & Supremo* Unknown
FTMPAT [129] 1 project No No Unknown
SPAPE [72] 10 projects No No Unknown
JExtract [80], [98] 12 projects No w/ JDeodorant Precision: 38% - 48%

Recall: 38% - 48%
DCRA [83] 50 projects No No Unknown
RASE [69] 2 projects w/ experts w/ RASE entire methods Accuracy: 58%
SEMI [10] 5 projects w/ 3 developers w/ JDeodorant Precision: 13.8% - 22.4%

w/ JExtract Recall: 57.1% - 92.8%
F-measure: 22.23% - 36.09%

GEMS [89] 5 projects w/ 4 authors w/ JDeodorant Precision: 13.3% - 25.3%
w/ JExtract Recall: 31.9% - 49.2%
w/ SEMI F-measure: 18.8% - 32.7%

PostponableRefactoring [66] Unknown No No Unknown
LLPM [115] 5 projects No w/ JDeodorant Precision: 18.5% - 30.3%

w/ JExtract Recall: 52.6% - 62.1%
F-measure: 27.4% - 40.7%

PRI [123] 6 projects No No Accuracy: 94.1%
LMR [114] 1 project No No Unknown
CREC [90] 6 projects No No F-measure: 76% - 83%
Bandago [125] 10 projects w/ 35 developers w/ JDeodorant Unknown
Unnamed [128] Unknown w/ 6 teams No Unknown
Unnamed [15] 2 projects w/ 8 developers No Unknown
CloneRefactor [136] 1,343 projects No No Unknown
TOAD [16], [65] 9 projects w/ 10 developers No Unknown
Segmentation [23] 6 projects No w/ JExtract Precision: 22.81% - 38.75%

w/ SEMI Recall: 24.58% - 41.75%
F-measure: 23.66% - 40.19%

LiveRef [94], [99] 3 projects w/ 42 developers No Unknown
AntiCopyPaster [93], [97] 13 projects w/ 72 developers No Precision: 82%

Recall: 82%
F-measure: 82%
PR-AUC: 86%

REM [11] 5 projects No w/ IntelliJ’s Rust Unknown
w/ Visual Studio Rust Analyzer

‘∗’ indicates the tool is not peer-reviewed

advances in metrics and benchmarks that make it easier to1255

compare different Extract Method techniques.1256

Programming Languages. The majority of studies1257

(81.92%) centralize on Java-based applications [8]–[10], [14],1258

[15], [18], [21], [23], [64], [66]–[75], [77]–[81], [83]–[94], [96]–1259

[100], [103]–[110], [114]–[118], [121]–[131], [135], while C++1260

[72], [111], [120], Ruby [112], C# [113], Pharo [16], [65],1261

Haskell [137], Erlang/OTP [134] and Rust [11], Java and1262

Procedural in combination [72], accounts for 18.07%. It is1263

evident that Extract Method studies tend to incorporate Java1264

codebases. This could be because many tools Extract Method1265

are designed for Java.1266

Dataset Availability. Dataset availability is one of the1267

essential factors that allow the reproducibility and extension1268

of studies. We collect all artifacts associated with the PSs, 1269

which encompasses studies providing raw datasets that 1270

require processing by researchers, as well as those that offer 1271

solely user survey responses from developers. It is observed 1272

from Tables 6, 7, and 8 that 78.31% of Extract Method datasets 1273

are not publicly available. This observation highlights the 1274

need for public datasets to enable replication and extension 1275

of studies and mitigate benchmark bias when comparing 1276

the proposed approach with existing studies. 1277

We conjecture that the ground truth used to compare 1278

with existing studies might be biased. Also, the comparison 1279

against the state-of-the-art may not be appropriate unless 1280

these tools are called in the same context or intent as in 1281

the original paper. For instance, JDeodorant applies the 1282
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Fig. 9: Software metrics considered in the Extract Method
refactoring tool.

Extract Method refactoring to deal with long methods. If this 1283

tool is being tested against an Extract Method performed 1284

to remove duplicates, it is expected not to recommend 1285

any code changes. Therefore, performing experimentation 1286

with techniques that address different intents may not be 1287

adequate. In a similar context, building a universal model 1288

that extracts methods based on the history of code changes 1289

without understanding the intent must be human-verified 1290

to see whether it is useful. 1291

Summary. Out of the 83 primary studies analyzed, almost
78% of the datasets are not publicly available. There is a
lack of sharing datasets, which is detrimental to reproduc-
ing research. Primary studies have mostly employed small
or medium-scale open-source applications, often developed
using Java, typically containing less than 225,000 lines of
code. These datasets are heterogeneous and do not contain
the same type of information, making their standardiza-
tion, for the purpose of benchmarking, difficult.

1292

5 DISCUSSION AND OPEN ISSUES 1293

To ensure that the Extract Method refactoring is properly 1294

identified/applied, we recommend retrofitting these tools 1295

with the following dimensions: 1296

à Provide context to guide developers on how to 1297

use Extract Method refactoring tools. Based on the find- 1298

ings from RQ1 and RQ2, it becomes apparent that cer- 1299

tain tools offer the context in which the Extract Method 1300

refactoring is being performed (e.g., JDeodorant, SEMI, 1301

AntiCopyPaster). The opportunities of applying this 1302

refactoring might be related to Duplicate Code removal, Long 1303

Method extraction, etc. However, other tools (e.g., ReAF, 1304

SDAR) lack the context in which the Extract Method is be- 1305

ing performed. It is worth noting that without properly 1306

considering the context, the ground truth used to compare 1307

against existing studies might be biased. Also, the com- 1308

parison against the state-of-the-art may not be appropriate 1309

unless these tools are called in the same context or intent 1310

as their original papers. For instance, JDeodorant applies 1311

the Extract Method refactoring to deal with long methods. If 1312

this tool is being tested against an Extract Method performed 1313

to remove duplicates, it is expected not to recommend 1314

any code changes. Therefore, performing experimentation 1315

against techniques tackling different intents may not be 1316

adequate. In a similar context, building a universal model 1317

that extracts methods based on the history of code changes 1318

without understanding the intent must be human-verified 1319

to see whether it is useful. 1320

à Recommend appropriate naming for the method 1321

after the extraction. Since the main purpose of the tools 1322

listed in Table 4 is the recommendation of Extract Method 1323

refactoring, developers will ultimately need to provide a 1324

clear name for the extracted method, which is considered 1325

one of the most influential factors in the developer’s de- 1326

cision on whether to perform Extract Method or not [141], 1327

[142]. The appropriate name assists in expressing its role 1328

and meaning to the extracted code. The existing approaches 1329

can complement their recommendation of the Extract Method 1330

with the naming recommendation of the extracted method. 1331
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TABLE 6: Benchmarks and datasets used in Extract Method refactoring studies for Long Method decomposition.

Study Intent Language No of Metric No of Project Project Other Properties Dataset Link Validation Method

Tuck [95] Long Method Unknown Unknown Unknown Unknown Unknown Unknown Proof of Concept
JDeodorant [70], [71] Long Method Java 3 1 Violet 0.16 LOC: 4,100/ 61 classes/ 144 methods Unknown Experiment
AutoMed [21] Long Method Java 10 1 houtReader 1.8.0 LOC: 20,000 / 269 classes Unknown Caee Study
Meananeatra et al. [121] Long Method Java 3 Unknown Unknown Unknown Unknown Experiment
Kaya & Fawcett [102] Long Method C++ N/A Unknown Unknown Unknown Unknown Experiment
Charalampidou et al. [124] Long Method Java 5 1 jFlex Unknown Unknown Caee Study
Charalampidou et al. [9] Long Method Java 8 1 jFlex Unknown Unknown Caee Study
SEMI [10] Long Method Java 5 5 Wikidev Unknown [165] Caee Study

MyPlanner
MyWebMarket
JUnit
JHotDraw

Haas & Hummel [87] Long Method Java 2 3 Agilefant LOC: 36,116/ 2,841 methods Unknown Experiment
JabRef LOC: 128,145 / 5,665 methods
JChart2D LOC: 50,728 / 1,849 methods

Haas & Hummel [88] Long Method Java 9 13 Unknown Unknown Unknown Experiment
Kaya & Fawcett [101] Long Method C++ N/A Unknown Unknown Unknown Unknown Experiment
LLPM [115] Separation of Concerns Java 4 5 Wikidev 130 total methods Unknown Experiment

SelfPlanner
MyWebMarket
JUnit
JHotDraw

LMR [114] Long Method Java 5 1 JFreeChart 1.0.17 LOC: 5,665 / 20 classes / 552 methods Unknown Caee Study
Choi et al. [74] Long Method Java 6 1 JEdit LOC: 97,116 - 313,706 Unknown Experiment
Bandago [125] Long Method Java 4 10 Columba 1.4 LOC: 26,600/ 436 classes [166] Caee Study

JGraphT 0.9.0 LOC: 14,180 / 218 classes
SportTracker 5.7 LOC: 5,200 / 40 classes
Cayanne 4.0 LOC: 45,000 / 533 classes
CheckStyle 6.4.1 LOC: 60,000 / 399 classes
Jena 2.12.1 LOC: 54,410 / 697 classes
JGroups 3.4.8 LOC: 76,570 / 644 classes
Quartz 2.1.7 LOC: 26,810 / 176 classes
Roller 5.1.2 LOC: 47,460 / 452 classes
Squirrel 3.6.0 LOC: 79,070 / 879 classes

TOAD [16], [65] Long Method Pharo N/A 9 GitMultipileMatrix Unknown [167] Experiment
TestDeviator
DrTest
Regis
SmallSuiteGenerator
Roassal
Live Robot Programming
KerasBridge
GToolkit Documenter

Shahidi et al. [73] Long Method Java Unknown 5 JEdit 4.5.1 LOC: 107,212 / 1,141 classes / 6,663 methods Unknown Experiment
FreeMind 0.9.0 LOC: 40,933 / 696 classes / 4,583 methods
ArgoUML 0.34 LOC: 249,538 / 2,539 classes / 17,485 methods
JFreeChart 1.0.14 LOC: 222,814 / 8,630 classes / 619 methods
jVLT 1.3.2 LOC: 29,161 / 420 classes / 2,036 methods

Segmentation [23] Long Method Java 2 6 JUnit Unknown [157] Experiment
JHotDraw
MyWebMarket
EventBus
Mockito
XData

LiveRef [94], [99] Long Method Java 20 3 Space Invaders Unknown [158] Experiment
JHotDraw
Movie rental system

à Lack of clarity of how the approaches leverage1332

metrics and decide the associated threshold to make1333

the decision. From Figure 9, we observe different software1334

quality metrics related to various quality attributes used by1335

the tools. For instance, AntiCopyPaster has used 78 met-1336

rics related to size, complexity, coupling, and keywords to1337

extract duplicate code. In contrast, LiveRef utilized around1338

20 metrics related to complexity, cohesion, and maintain-1339

ability to identify the extraction targets of Long Method code1340

smell. However, the implementation of these metrics may1341

vary between these tools based on the context. Additionally,1342

there may be cases where different metric names are used to1343

improve some quality attributes. This phenomenon might1344

impact the interpretation of the correctness of the recom-1345

mended tools.1346

à Adapt Extract Method refactoring operations for1347

multiple programming languages. As reported in RQ2,1348

there are an existence of multiple Extract Method refactoring1349

tools; however, RQ1 and RQ2 findings show that most of1350

these tools are limited to supporting Java systems which1351

narrow Extract Method-related research to Java systems.1352

Hence, restricting research to a single language will not1353

accurately reflect real-world scenarios [184]; there are op-1354

portunities for researchers to evolve the field further and1355

increase the diversity of their research. The developers of1356

non-Java systems gain no benefit without a tool to use1357

in their development workflow. Furthermore, recent trends1358

have shown a rise in the popularity of dynamically typed1359

programming languages (e.g., Python), giving more urgency 1360

for the research community to construct tools that support 1361

non-traditional research languages. 1362

à Lack of benchmarks. With the rise of refactoring 1363

mining tools [184]–[186], such tools were used to create 1364

datasets that already performed Extract Method refactor- 1365

ings from open-source software repositories. The collected 1366

refactorings became one of the main sources of already 1367

quantitative analysis for refactoring recommendation stud- 1368

ies. For instance, the mined Extract Method refactorings 1369

were used either as an oracle to validate the correctness of 1370

recommendations [80], [98], [187], [188], or as training and 1371

testing sets for machine learning models and deep learning 1372

models [93], [97], [104]. While these tools have demonstrated 1373

high detection accuracy [189], they solely parse source 1374

code changes to identify refactoring patterns. So, there is 1375

no association between the performed refactoring and the 1376

developer’s rationale behind it. Even the reliance on the 1377

developer’s documentation of the code change may not 1378

necessarily reveal the needed details behind the refactoring 1379

intent. Without such information, it becomes difficult to 1380

guess whether a mined Extract Method was performed to 1381

split a long method, segregate concerns from a complex 1382

method, or remove a clone. Therefore, studies using these 1383

data sets make assumptions concerning their intent, which 1384

may or may not hold. Any refactoring being performed 1385

outside of the paper’s presumed context is noise that may 1386

hinder the data quality for training or validation. That is 1387
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TABLE 7: Benchmarks and datasets used in Extract Method refactoring studies for Code Clone extraction.

Study Intent Language No of Metric No of Project Project Other Properties Dataset Link Validation Method

CloRT[135] Code Clone Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Komondoor & Horwitz [132] Code Clone Procedural N/A Unknown Unknown Unknown Unknown Proof of Concept
Komondoor & Horwitz [82] Code Clone Procedural N/A Unknown Unknown Unknown Unknown Proof of Concept
CCShaper [119] Code Clone Java 6 1 Ant 1.6.0 LOC: 180,000 / 627 files Unknown Caee Study
Aries [18], [116], [117] Code Clone Java 6 1 Ant 1.6.0 LOC: 180,000 / 627 files Unknown Caee Study
Juillerat & Hirsbrunner [131] Code Clone Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Wrangler [134] Code Clone Erlang/OTP N/A 3 Wrangler LOC: 30,872 Unknown Experiment

Mnesia LOC: 28,152
Yaws LOC: 29,603

HaRe [133] Code Clone Haskell 98 N/A 13 Previous work [137] Unknown Unknown Caee Study
Choi et al. [130] Code Clone Java 3 1 Unknown KLOC: 110 / 296 files Unknown Caee Study
CeDAR [96] Code Clone Java 2 9 Ant 1.7.0 KLOC: 67 Unknown Experiment

Columba 1.4 KLOC: 75
EMF 2.4.1 KLOC: 118
Hibernate 3.3.2 KLOC: 209
Jakarta-JMeter 2.3.2 KLOC: 54
JEdit 4.2 KLOC: 51
JFreeChart 1.0.10 KLOC: 76
JRuby 1.4.0 KLOC: 101
Squirrel-SQL 3.0.3 KLOC: 141

FTMPAT [129] Code Clone Java 3 1 Ant 1.7.0 Unknown Unknown Caee Study
SPAPE [72] Code Clone Java Unknown 10 Linux 2.6.6/kernel LOC: 30,629 Unknown Experiment

Procedural Unix/make 3.82 LOC: 33,864
httpd 2.2.2/server LOC: 36,926
devecot 2.0.8/src/auth LOC: 18,243
gstreamer 0.10.31/gst LOC: 66,637
gtk 2.91.5/gdk/x11 LOC: 30,118
iptables 1.4.10/extensions LOC: 19,668
nginx-0.8.15/src/core LOC: 17,126
proftpd 1.3.3c/src LOC: 34,404
PostgreSQL 9.0.2/src/backend/access LOC: 65,046

Bian et al. [120] Code Clone Java Unknown 5 Linux 2.6.6/arch Unknown Unknown Experiment
Linux 2.6.6/net Unknown
Linux 2.6.6/sound/drivers Unknown
Unix/make 3.82 Unknown
http2.2.2/server Unknown

JDeodorant [67], [68], [86], [126], [127] Code Clone Java N/A 9 Ant 1.7.0 / Ant 1.9 KLOC: 67 Unknown Experiment
Columba 1.4 KLOC: 75
EMF 2.4.1 KLOC: 118
JMeter 2.3.2 / JMeter 2.9 KLOC: 54
JEdit 4.2 KLOC: 51
JFreeChart 1.0.10 / JFreeChart 1.0.14 KLOC: 76
JRuby 1.4.0 / JRuby 1.7.3 KLOC: 101
Hibernate 3.3.2 KLOC: 209
SQuirreL SQL 3.0.3 KLOC: 141

DCRA [83] Code Clone Java 1 50 Qualitas Corpus [168] (v. 20120401) Unknnown Unknown Experiment
RASE [69] Code Clone Java N/A 2 Previous works [169], [170] Unknown [171] Experiment
CREC [90] Code Clone Java N/A 6 Axis2 8,723 commits [153] Experiment

Eclipse.jdt.core 22,358 commits
Elastic Search 14,766 commits
JFreeChart 3,603 commits
JRuby 24,434 commits
Lucene 22,061 commits

PRI [123] Code Clone Java N/A 6 AlgoUML LOC: 127,145 / 1,559 files Unknown Caee Study
Tomcat LOC: 215,584 / 1,537 files
Log4j LOC: 59,499 / 817 files
Eclipse AspectJ LOC: 326,563 / 4,758 files
JEdit LOC: 107,368 / 561 files
JRuby LOC: 186,514 / 1,256 files

Ettinger et al. [109], [110] Code Clone Java N/A Unknown Previous work [172] 59 clone pairs Unknown Proof of Concept
Unnamed [15] Code Clone Java N/A 2 JFreeChart KLOC: 260 / 990 classes Unknown Experiment

JUnit KLOC: 43 / 449 classes
Unnamed [128] Code Clone Java N/A Unknown Unknown Unknown Unknown Caee Study
CloneRefactor [136] Code Clone Java N/A 1.343 Previous work [173] LOC (AVG): 980 Unknown Experiment
Sheneamer [92] Code Clone Java N/A 6 Previous work [90] [153] Dataset of [153] Experiment

6 netbeans 200 paired clones Unknown
eclipse-jdtcore 400 paired clones
EITC 426 paired clones
J2sdk1.4.0-javax 482 paired clones
eclipse-ant 522 paired clones
cocoon 655 paired clones

AntiCopyPaster [93], [97] Code Clone Java 78 13 arthas 73,884 total commits [174] Experiment
easyexcel
camel-quarkus
commons-lang
flink
iceberg
jena
pulsar
storm
apollo
JavaGuide

why it is essential to curate any collected refactorings by1388

associating them with their proper context. Yet, the task of1389

labeling refactorings’ contexts may not be trivial.1390

à Lack of clarity on potential Extract Method draw-1391

backs. All reviewed studies primarily focus on motivating1392

the need for method extaction to improve readability, main-1393

tainability, and reusability. However, it is critical to raise the1394

developer’s awareness of the potential limitations inherited1395

from the solutions’ design or execution. One of the main1396

design-level limitations of these approaches is the potential1397

increase in the code’s cognitive complexity. In fact, when a1398

new method is extracted, it may introduce additional local1399

variables and parameters. Such addition can adversarially1400

hinder program comprehension and add a maintenance1401

burden. Additionally, adding new method calls comes with1402

additional overhead, such as method dispatch and return, 1403

which may reduce the program’s performance, especially 1404

when the extracted code breaks tight loops [190]. Finally, de- 1405

pending on where the extracted method lives, it can change 1406

the scope or visibility of its variables or objects, leading 1407

to a violation of the behavior preservation property. While 1408

the benefits of the proposed refactorings may outweigh 1409

the drawbacks, studies should warn developers to avoid 1410

introducing regressions in their systems. 1411

à Integration of Extract Method tools into the devel- 1412

oper workflow. While our finding from RQ2 shows that 1413

researchers proposed an approach to recommend Extract 1414

Method refactoring opportunities, not all approaches can be 1415

used in practice. Hence, the community needs to better col- 1416

laborate with established tool/IDEs vendors in integrating 1417
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TABLE 8: Benchmarks and datasets used in Extract Method refactoring studies for Separation of Concerns.

Study Intent Language No of Metric No of Project Project Other Properties Dataset Link Validation Method

Maruyama [64] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Nate [122] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
SDAR [118] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Juillerat & Hirsbrunner [78] Code Clone Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Xrefactory [111] Separation of Concerns C++ N/A Unknown Unknown Unknown Unknown Proof of Concept
Unnamed [112] Separation of Concerns Ruby N/A Unknown Unknown Unknown Unknown Proof of Concept
RefactoringAnnotation [8] Separation of Concerns Java Unknown 5 Azureus Unknown Unknown Experiment

GanttProject
JasperReports

Java 1.4.2 libraries
Abadi et al. [79] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Caee Study
Abadi et al. [77] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Caee Study
ReAF [75] Separation of Concerns Java Unknown 1 Ant 1.8.1 Unknown Unknown Experiment
Sharma [76] Separation of Concerns C/C++ N/A 1 CppCheck Unknown Unknown Proof of Concept
Unnamed [113] Separation of Concerns C# Unknown Unknown Unknown Unknown Unknown Proof of Concept
JExtract [80], [98] Separation of Concerns Java Unknown 12 MyWebMarket Unknown [148] Experiment

JUnit 3.8 / 4.10
JHotDraw 5.2
Ant 1.8.2
ArgoUML 0.34
Checkstyle 5.6
FindBugs 1.3.9
FreeMind 0.9.0
JFreeChart 1.0.13
Quartz 1.8.3
SQuirreL SQL 3.1.2
Tomcat 7.0.2

GEMS [89] Separation of Concerns Java 48 5 Wikidev 56 methods Unknown Experiment
SelfPlanner 25 methods
MyWebMarket 23 methods
JUnit 12 methods
JHotDraw 14 methods

Imazato et al. [100] Separation of Concerns Java 5 Ant LOC: 260,624 / 1,532 methods Unknown Experiment
ArgoUML LOC: 370,750 / 1,470 methods
JEdit LOC: 187,166 / 1,066 methods
jFreeChart LOC: 327,865 / 180 methods
Mylyn LOC: 166,149 / 980 methods

PostponableRefactoring [66] Separation of Concerns Java N/A Unknown Unknown Unknown Unknown Proof of Concept
Nyamawe et al. [105], [106] Separation of Concerns Java N/A 55 [175] Unknown [175] Experiment
Krasniqi & Cleland-Huang [108] Separation of Concerns Java N/A 4 Derby KLOC: 170/ 2,382 commits [176] Experiment

Drools KLOC: 371 / 840 commits
Groovy KLOC: 141 / 4,892 commits
Infinispan KLOC: 299 / 2,349 commits

Abid et al. [85] Separation of Concerns Java 8 30 [177] Unknown [177] Experiment
Aniche et al. [84] Separation of Concerns Java 61 11,149 [178] 8.8 million commits [178] Experiment
Van der Leij et al. [14] Separation of Concerns Java 7 11,149 Previous work [84] 8.8 million commits Dataset of [84] Experiment
Sagar et al. [107] Separation of Concerns Java 60 800 Previous work [179] 748,001 commits Dataset of [103] Experiment
AlOmar et al. [103] Separation of Concerns Java N/A 800 Previous work [179] 748,001 commits [180] Experiment

Nyamawe [104] Separation of Concerns Java N/A 65 Previous works [105], [108], [181] 7,520 commits Datasets of [105], [108], [181] Experiment
Cui et al. [81] Separation of Concerns Java N/A Unknown Previous works [6], [89] Unknown [182] Experiment
REM [11] Separation of Concerns Rust N/A 5 petgraph LOC: 20,157 [160] Caee Study

gitoxide LOC: 20,211
kickof LOC: 1,502
sniffnet LOC: 7,304
beerus LOC: 302

Palit et al. [91] Separation of Concerns Java 61 410 Previous work [84] 55,268 commits [183] Experiment

their contributions with popular tools and IDEs to promote1418

the usage of their artifacts. As for the existing tools, in1419

addition to providing extensive and innovative refactoring1420

functionality, researchers must ensure that their products1421

exhibit an optimal user experience. Usability and trustwor-1422

thiness are essential to refactoring tool adoption and are1423

among the reasons for the limited usage [12], [191]–[193].1424

à Extract Method refactoring support using Large1425

Language Models (LLMs). While Extract Method is con-1426

sidered as one of the most popular refactoring operations1427

and represents approximately 49.6% of the total refactorings1428

recommended [5], it is recognized as one of the most diffi-1429

cult and error-prone refactorings [6], [12], [32]. Even though1430

we have shown in this systematic review multiple studies1431

on Extract Method in the literature using multiple artificial1432

intelligence (AI) techniques, its adoption is still challenging1433

for developers [6], [12]. More recently, Large Language1434

Models (LLMs) have made rapid advancements that have1435

brought AI to a new level, enabling and empowering even1436

more diverse software engineering applications and indus-1437

trial domains with intelligence [194]–[198]. Such LLMs are1438

pre-trained on large corpora of data which enclose nu-1439

merous commonsense knowledge and support Transformer1440

architecture with millions, even billions of parameters. We1441

believe that the Extract Method can benefit significantly from1442

LLM advances. For instance, dedicated LLMs can be used1443

to identify code fragments that need to be extracted and to1444

recommend appropriate names for the extracted methods.1445

LLMs can also automatically generate the documentation of1446

Extract Method refactoring changes, e.g., generate the commit 1447

message or pull request description along with the intent 1448

behind the refactoring. It can also help with code review 1449

by explaining the intent of the Extract Method refactoring 1450

and providing a summary of the code change before and 1451

after the refactoring. We thus believe that LLMs represent 1452

a unique technique to empower Extract Method refactoring 1453

and open up various research venues in the field of Extract 1454

Method in particular and refactoring in general. 1455

6 THREATS TO VALIDITY 1456

In this section, threats are discussed in the context of three 1457

types of threats of validity: internal validity, construct valid- 1458

ity, and external validity. 1459

Internal threats to validity: Obtaining a representative set 1460

of literature publications for this SLR can be considered a 1461

validity threat due to the search process. To minimize this 1462

threat, we followed the SLR guidelines [35], [36], [50]–[52]. 1463

In particular, we have carefully established search engines, 1464

search terms, and inclusion/exclusion criteria to ensure that 1465

the review of the literature is comprehensive. Additionally, 1466

we considered related search terms and the main terms of 1467

the research questions to construct the search string and se- 1468

lect relevant articles. Furthermore, we followed a five-stage 1469

study selection process and applied each stage’s inclusion 1470

and exclusion criteria described in Section 3. Moreover, the 1471

analysis involved snowballing to expand the paper collec- 1472

tion. These study design steps reduce the possibility that 1473

papers are missed. Another threat is the limitation of search 1474
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terms and search engines, which might lead to incomplete1475

literature publications. To limit this threat, we used carefully1476

defined keywords and comprehensive academic search en-1477

gines (i.e., ScienceDirect, Scopus, Springer, Web of Science,1478

ACM, IEEE, and Wiley) that cover the main publishers’1479

venues. We observed that when using search engines, par-1480

ticularly IEEE, some papers containing our keywords were1481

not being found despite being indexed in their libraries. This1482

issue has been reported in previous studies when using the1483

IEEE search engine [199], [200]. However, we found these1484

missed papers during the snowballing process. Regarding1485

the quality of the selected PSs, only the studies that un-1486

derwent peer review by leading academic publishers were1487

included. Furthermore, selected studies that were within the1488

search timeline were included. To our knowledge, all PSs1489

relevant to our research goal and within the search window1490

have been included.1491

Construct threats to validity: Concerning the subjectivity1492

of the assessment of the PSs, the primary studies were1493

reviewed independently by two authors. The first author1494

performed data analysis and extraction from the second au-1495

thor, who reviewed the currently selected PSs. At the end of1496

each iteration, the authors met and performed any necessary1497

refinements. In the event of disagreements, the researchers1498

discussed these cases to reach a consensus. Additionally, to1499

avoid personal bias during manual analysis, two authors1500

conducted each step in the manual analysis, and the results1501

were always cross-validated. Moreover, some PSs do not1502

make a clear distinction between how refactoring oppor-1503

tunities are detected, and how the refactoring is actually1504

performed. Therefore, for these studies, we consider detec-1505

tion to refactoring opportunities to be part of the correction1506

if the end goal of the PSs is Extract Method refactoring1507

identification.1508

External threats to validity: The collected papers contain1509

a significant proportion of academic works, forming an1510

adequate basis for concluding findings that could be useful1511

for academia. However, we cannot claim that the same1512

Extract Method detection and execution is used in industry.1513

Additionally, our findings are mainly within the field of soft-1514

ware refactoring. We cannot generalize our results beyond1515

this subject.1516

7 CONCLUSION1517

In this paper, we map and review the body of knowledge1518

on Extract Method refactoring opportunities. We systemati-1519

cally reviewed 83 papers and classified them. This research1520

aims to aggregate, summarize and discuss the practical1521

approaches that recommend Extract Method refactoring. Our1522

main findings show that (i) 38.6% of Extract Method refactor-1523

ing studies primarily focus on addressing code clones; (ii)1524

Several of the Extract Method tools involve the developer1525

in the decision-making process when applying the method1526

extraction, and (iii) the existing benchmarks vary widely1527

and lack uniform information, posing challenges in stan-1528

dardizing them for benchmarking purposes. This existing1529

research empowers the community with information to1530

guide future Extract Method tool development. Future work1531

includes evaluation of each tool to determine the extent to1532

which tools recommend Extract Method refactoring given the 1533

same context. 1534
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M. Ó Cinnéide, “Recommendation system for software refactor- 2162

ing using innovization and interactive dynamic optimization,” 2163

in Proceedings of the 29th ACM/IEEE international conference on 2164

Automated software engineering, pp. 331–336, 2014. 2165

[188] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, 2166

K. Deb, and A. Ouni, “Many-objective software remodularization 2167

using NSGA-III,” ACM Transactions on Software Engineering and 2168

Methodology (TOSEM), vol. 24, no. 3, pp. 1–45, 2015. 2169

[189] N. Tsantalis, A. Ketkar, and D. Dig, “RefactoringMiner 2.0,” IEEE 2170

Transactions on Software Engineering, vol. 48, no. 3, pp. 930–950, 2171

2020. 2172

[190] P. Huang, X. Ma, D. Shen, and Y. Zhou, “Performance regression 2173

testing target prioritization via performance risk analysis,” in Pro- 2174

ceedings of the 36th International Conference on Software Engineering, 2175

pp. 60–71, 2014. 2176

[191] A. M. Eilertsen and G. C. Murphy, “The usability (or not) of 2177

refactoring tools,” in 2021 IEEE international conference on software 2178

analysis, evolution and reengineering (SANER), pp. 237–248, IEEE, 2179

2021. 2180

[192] M. Vakilian and R. E. Johnson, “Alternate refactoring paths 2181

reveal usability problems,” in Proceedings of the 36th international 2182

conference on software engineering, pp. 1106–1116, 2014. 2183

[193] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and 2184

R. E. Johnson, “Use, disuse, and misuse of automated refactor- 2185

ings,” in 2012 34th international conference on software engineering 2186

(icse), pp. 233–243, IEEE, 2012. 2187

[194] A. Fan, B. Gokkaya, M. Harman, M. Lyubarskiy, S. Sengupta, 2188

S. Yoo, and J. M. Zhang, “Large language models for soft- 2189

ware engineering: Survey and open problems,” arXiv preprint 2190

arXiv:2310.03533, 2023. 2191

[195] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation 2192

vs. experience: Evaluating the usability of code generation tools 2193

powered by large language models,” in Chi conference on human 2194

factors in computing systems extended abstracts, pp. 1–7, 2022. 2195

[196] C. S. Xia, Y. Wei, and L. Zhang, “Automated program repair in 2196

the era of large pre-trained language models,” in Proceedings of the 2197

45th International Conference on Software Engineering (ICSE 2023). 2198

Association for Computing Machinery, 2023. 2199

[197] W. Zhang, Y. Deng, B. Liu, S. J. Pan, and L. Bing, “Sentiment 2200

analysis in the era of large language models: A reality check,” 2201

arXiv preprint arXiv:2305.15005, 2023. 2202

[198] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, 2203

“Chatgpt prompt patterns for improving code quality, refactor- 2204

ing, requirements elicitation, and software design,” arXiv preprint 2205

arXiv:2303.07839, 2023. 2206

[199] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for 2207

static analysis of java reflection-literature review and empirical 2208

study,” in 2017 IEEE/ACM 39th International Conference on Software 2209

Engineering (ICSE), pp. 507–518, IEEE, 2017. 2210

[200] M. Zakeri-Nasrabadi, S. Parsa, E. Esmaili, and F. Palomba, “A 2211

systematic literature review on the code smells datasets and 2212

validation mechanisms,” ACM Journal on Computing and Cultural 2213

Heritage, 2023. 2214


	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Survey Planning
	3.1.1 Identifying the need for a Systematic Literature Review
	3.1.2 Specifying the research questions

	3.2 Primary Studies Selection
	3.2.1 Search strategy
	3.2.2 Study selection

	3.3 Study Quality Assessment
	3.4 Data Extraction, Categorization, and Analysis
	3.5 Final Primary Studies Selection

	4 Results
	4.1 What approaches were considered by the PSs to recommend Extract Method refactoring?
	4.2 What are the main characteristics of Extract Method recommendation tools?
	4.3 What are the datasets, and benchmarks used for evaluating and validating Extract Method recommendation tools?

	5 Discussion and Open Issues
	6 Threats to Validity
	7 Conclusion
	References

