
Nurturing Code Quality: Leveraging Static Analysis and Large Language Models
for Software Quality in Education

EMAN ABDULLAH ALOMAR, Stevens Institute of Technology, USA

Large Language Models (LLMs), such as ChatGPT, have become widely popular for various software engineering tasks, including
programming, testing, code review, and program comprehension. However, their impact on improving software quality in educational
settings remains uncertain. This paper explores our experience teaching the use of Programming Mistake Detector (PMD) to foster a
culture of bug fixing and leverage LLM to improve software quality in the classroom. This paper discusses the results of an experiment
involving 155 submissions that carried out a code review activity of 1,658 rules. Our quantitative and qualitative analysis reveals
that a set of PMD quality issues influences the acceptance or rejection of the issues, and design-related categories that take longer
to resolve. Although students acknowledge the potential of using ChatGPT during code review, some skepticism persists. Further,
constructing prompts for ChatGPT that possess clarity, complexity, and context nurtures vital learning outcomes, such as enhanced
critical thinking, and among the 1,658 issues analyzed, 93% of students indicated that ChatGPT did not identify any additional issues
beyond those detected by PMD. Conversations between students and ChatGPT encompass five categories, including ChatGPT’s use of
affirmation phrases like ‘certainly’ regarding bug fixing decisions, and apology phrases such as ‘apologize’ when resolving challenges.
Through this experiment, we demonstrate that code review can become an integral part of the educational computing curriculum. We
envision our findings to enable educators to support students with effective code review strategies, increasing awareness of LLMs, and
promoting software quality in education.

CCS Concepts: • Applied computing → Education; • Software and its engineering → Software maintenance tools.

Additional Key Words and Phrases: large language models, education, bugfix, static analysis, code quality

ACM Reference Format:
Eman Abdullah AlOmar. 2025. Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality
in Education. 1, 1 (March 2025), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Linting is a code inspection practice in which developers use static analysis to identify bad coding patterns, known
as issues. These issues can hinder the quality of the code, making it harder to understand and more prone to errors.
Since their inception, linters have been introduced early to students to help them conceptualize the avoidance of poor
programming practices [33]. Yet, the linters output is in the form of warnings with no recommended fix. Due to the
non-actionable nature of these warnings [57], and the lack of their comprehension [56], many developers end up
considering them as false positives [22].

However, the rise of Large Language Models (LLMs), such as the Generative Pre-trained Transformer (the core model
behind ChatGPT), has gained popularity for its ability to generate responses and design solutions for a variety of input
problems, including education. This technology has sparked a debate about its potential benefits and drawbacks for

Author’s address: Eman Abdullah AlOmar, ealomar@stevens.edu, Stevens Institute of Technology, Hoboken, New Jersey, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Eman Abdullah AlOmar

student learning [38]. With diverse applications in source code, including code quality [4, 52], programming [10], bug
management [21], and program comprehension [31], it presents an opportunity to bridge the gap between developers
and the proper adoption of static analysis. In this context, little is known about ChatGPT’s ability to help students
effectively comprehend and address static analysis outcomes, as part of learning code inspection.

Our paper reflects on the experience of integrating ChatGPT in the code linting process, to support students with
their task of debugging and improving the quality of existing systems. The Programming Mistake Detector (PMD)1 is a
state-of-the-art static analysis plugin that identifies potential code problems, such as code violations and bad practices.
It helps developers maintain code quality by providing a range of pre-defined rules that can be customized according
to project needs. In this study, students are instructed to utilize PMD to examine an open-source system (code that
is not theirs) and pinpoint potential problems in various categories such as documentation, design, and security. For
each identified issue, students are required to discuss whether it is worth fixing and, if so, propose a fix through code
modification. Students may use ChatGPT as a helper in deciding whether to address an issue and determining the
appropriate corrective measure. This involves utilizing the language model’s explanatory capabilities alongside its code
generation and debugging functions. These experiments aim to fulfill educational objectives related to the improvement
of code debugging skills of students, which are typically acquired in industry [28]. In addition, it introduces students
to poor coding practices and methods for their refactoring. Furthermore, it trains students not only to use ChatGPT
but also to review its recommendations and reason over their validity, with respect to analyzed code, before making a
decision of whether and how it should be fixed. This latter objective is particularly significant, as it gradually elevates
students’ inherent assumption of ChatGPT’s ability to hold the ground truth. In fact, students discover how the language
model’s code recommendations might not resolve the issues identified by the PMD tool.

This study builds on recent work in the field by offering more details on the approach and design [4]. It also addresses
three new research questions and expands the study to include a total of 155 students and 1,658 PMD rulesets. This
paper advances the adoption of static analysis warnings and leverages LLMs to enhance software quality in educational
settings by (i) designing a practical assignment aimed at improving software systems’ quality and (ii) detailing the
experience with the PMD tool and ChatGPT within a Software Quality Assurance course taken by 155 undergraduate
and graduate students. As part of the contributions of this paper, we provide the assignment description and the tool
documentation for educators to adopt and extend2.

The remainder of this paper is organized as follows: Section 2 reviews the existing studies related to the usage of
ChatGPT in software engineering tasks. Section 3 outlines our experimental setup in terms of data analysis and research
questions. Section 4 discusses our findings, while the reflection is discussed in Section 5. Section 6 captures any threats
to the validity of our work, before concluding with Sections 7 and 8.

2 RELATED WORK

Recent studies utilized ChatGPT for different software engineering tasks. Due to the importance of the topic, several
domains for the use of ChatGPT have been proposed, including code quality [51, 52], programming [10, 29, 45, 46],
testing [41], bug management [21, 44, 53], security [24], and program comprehension [31]. In this section, we are only
interested in research on the use of ChatGPT to solve software engineering tasks, summarized in Table 1.

White et al. [51, 52] presented prompt design techniques for software engineering using patterns to solve common
problems when using LLMs. The study provides a catalog of patterns for software engineering (e.g., change request

1https://pmd.sourceforge.io
2https://refactorings.github.io/education/

Manuscript submitted to ACM

https://refactorings.github.io/education/

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education 3

Table 1. Related work on ChatGPT to solve software engineering tasks.

Study Year Context Focus Dataset Evaluation

White et al. [51, 52] 2023 Code quality Prompt design patterns N/A N/A
Biswas [10] 2023 Programming Program assistant N/A N/A
Siddiq et al. [41] 2023 Testing Unit tests generation 354 classes Codex/CodeGen/ExpertEval/Evosuite
Sun et al. [45] 2023 Programming Code summarization 14,918 code samples SOTA(NCS/CodeBERT/CodeT5)
Haque & Li [21] 2023 Bug management Debugging & bug fixing N/A N/A
Sobania et al. [44] 2023 Bug management Bug fixing 40 code samples Codex/CoCoNut/APR
Tian et al. [46] 2023 Programming Code generation/summarization/repair 4,345 code samples Codex/Refactory
Liu et al. [29] 2023 Programming Code generation HumanEval [12] 19 LLMs
Khoury et al. [24] 2023 Security Code generation 21 classes N/A
Xia & Zhang [53] 2023 Bug management Bug fixing 80 code samples CodexRepair/selfAPR/RewardRepair

Reorder/TBar/CURE/COCONut
Ma et al. [31] 2023 Program comprehension Code semantics 2,327 code samples Tree-Sitter/CodeBERT/Slither

ExpertEval/Frama-C/Patches scripts
This work Education Debugging & bug fixing 1,658 code samples ExpertEval

simulation, code clustering, principled code, etc) that classifies patterns according to the types of problems they solve.
Additionally, the authors explored several prompt patterns developed to improve code quality, refactoring, requirements
elicitation, and software design. The authors concluded that the depth of LLMs capabilities is not widely appreciated.
Also, human involvement and expertise are needed to effectively leverage LLMs for software automation. Building on
these findings, the current research explores how ChatGPT specifically influences bug fixing skills among students. In
another study, Biswas [10] discussed an overview of ChatGPT as a language model developed by OpenAI that offers a
wide range of computer programming capabilities. These capabilities include code completion, correction, prediction,
error fixing, optimization, document generation, chatbot development, text-to-code generation, and technical query
answering. The author highlighted the ability of ChatGPT to provide explanations and guidance to users and concluded
that it is a powerful tool for the programming community. This study aims to analyze how ChatGPT can supplement
collaborative efforts and facilitate a deeper understanding of programming concepts. On the other hand, Siddiq et al.

[41] explored the effectiveness of LLMs in generating unit tests using two benchmarks: HumanEval and Evosuite. The
authors evaluated the models based on compilation rates, test correctness, test coverage, and test smells. Their findings
show that Codex model achieved above 80% coverage for the HumanEval dataset. Still, no model had more than 2%
coverage for the EvoSuite SF110 benchmark, and the generated tests also contained test smells such as Duplicated
Asserts and Empty Tests. The current research investigates bad testing practices mainly chosen by students and how
ChatGPT contributes to the resolutions. Sun et al. [45] utilized ChatGPT to automate code summarization by using
Python dataset called CSN-Python and comparing it with several state-of-the-art code summarization models. Their
approach first explored an appropriate prompt to guide ChatGPT in generating in-distribution comments and then
used such a prompt to ask ChatGPT to generate comments for all code snippets in the CSN-Python test set. The authors
also adopted widely-used metrics to assess the quality of the generated comments. The findings show that ChatGPT
performs worse than the state-of-the-art models. This research expands on those discussions by explicitly evaluating
the implications of ChatGPT on student critical thinking in programming and code summarization tasks. Haque and Li
[21] explored the capabilities of ChatGPT as a debugging tool and the best practices for integrating it into the software
development workflow. Their findings show that ChatGPT is a useful tool for debugging but should be used cautiously
in software development. The authors concluded that ChatGPT’s ability to learn from previous debugging sessions and
provide natural language suggestions can be valuable for improving code quality. However, it has several limitations,
including limited domain knowledge, context awareness, and integration with development tools. To address these
challenges, the present study examines the effectiveness of ChatGPT in providing real-time feedback during coding

Manuscript submitted to ACM

4 Eman Abdullah AlOmar

assignments when integrating it with static analysis tools, thereby enhancing the learning experience. In another study,
Sobania et al. [44] automatically analyzed bug fixing performance of ChatGPT. They evaluated ChatGPT on a standard
bug fixing benchmark, QuixBugs, and compared its performance with Codex, CoCoNut, and APR. Compared to these
approaches, ChatGPT fixes 31 out of 40 bugs, indicating that ChatGPT’s bug fixing performance is competitive with
the common deep learning approaches. However, the success rate can be further increased. This research builds on
that foundation by exploring how LLMs can be integrated with other tools to improve bug fixing performance. To
understand if ChatGPT is the ultimate programming assistant, Tian et al. [46] empirically experimented by emphasizing
three code-related tasks: code generation, code summarization, and program repair. For code generation, ChatGPT
struggles to generalize to new and unseen problems (i.e., potential data leakage problem [55]) due to the uncertainty of
whether or not ChatGPT has already learned the solution references in a given dataset. For program repair, ChatGPT
achieves competitive results compared to Refactory. For code summarization, ChatGPT may not be able to explain
the intention of the given code samples accurately. This study seeks to expand on that by assessing how LLMs can
facilitate student-ChatGPT interactions during coding assignments. Liu et al. [29] answered whether the code generated
by ChatGPT is correct. To do so, the authors combined LLM-based and mutation-based input generation to evaluate
the accuracy of LLM-generated code. Their main results reveal that prior popular code synthesis evaluation results
do not accurately reflect the performance of LLMs for code synthesis. This research builds on that foundation by
exploring how students perceive the code generated by ChatGPT, potentially increasing student engagement and
program comprehension. In a security-related context, Khoury et al. [24] investigated how secure the code generated
by ChatGPT was by mainly asking ChatGPT to generate computer programs to evaluate the security of the resulting
code. Their results suggested that ChatGPT is aware of potential vulnerabilities but can generate code that lacks
robustness to certain attacks. Building on these findings, this study explores whether ChatGPT can improve code
quality and security in programming tasks by providing students with reliable and secure coding solutions. Xia and
Zhang [53] proposed ChatRepair to automate a conversation-driven automated program repair approach. The tool
feeds the LLM with information on relevant test failures and then learns from failures and successes of earlier patching
attempts of the same bug. Their tool achieved the new state-of-the-art in program repair performance. This study
contributes to that conversation by evaluating the adaptability of LLMs in providing varied levels of support based on
individual student needs. Ma et al. [31] performed a study evaluating ChatGPT capabilities and limitations in software
engineering from three aspects: 1) syntax understanding, 2) static behavior understanding, and 3) dynamic behavior
understanding. The authors focused on ChatGPT’s ability to comprehend code syntax and semantic structures, including
abstract syntax trees, control flow graphs, and call graphs, and assessed ChatGPT’s performance on cross-language
tasks involving C, Java, Python, and Solidity. They concluded that ChatGPT possesses capabilities akin to an abstract
syntax tree parser. However, ChatGPT is susceptible to hallucination when interpreting code semantic structures
and fabricating nonexistent facts, which underscores the need to explore methods for verifying the correctness of
ChatGPT outputs to ensure its dependability in software engineering tasks. This study seeks to expand on that by
investigating if ChatGPT is susceptible to hallucination when it comes to coding semantic structures, especially by
analyzing potentially inappropriate results of the model, which can raise the student’s awareness of its limitations.

To summarize, since LLMs, such as ChatGPT, have gained widespread popularity and usage in various software
engineering tasks, their effectiveness in improving software quality in the classroom remains uncertain. Our work
investigates how ChatGPT can support students in improving code quality and reflects on how students use it. This
paper discusses the way in which we conducted a study in an educational setting using open-source projects with many

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education 5

Quality

Class lecture
(at universities located

in northeast of US)

Java project
selection

Programming
mistake detection

ChatGPT code
inspection

Quality
improvement

Online
questionnaire

Code smell

Refactoring

Bug

Code Style

Best Practices

Design

Error Prone

Documentation

Multithreading

Performance

Security

Fig. 1. Key phases of our study.

issues to further understand student learning capabilities in the discovery and correction of bugs and whether ChatGPT
eventually would be a code companion or a code replacement.

3 STUDY DESIGN

3.1 Goal & Research Questions

We formulate the main objective of our study based on the Goal Question Metric template [49], as follows:

Analyze the use of PMD for the purpose of cultivating the culture of bug fix and demonstrating a practical case

study of leveraging Large Language Models (LLMs) with respect to support educating software quality from the
point view of educators in the context of undergraduate and graduate students in Computer Science and Software

Engineering who analyze Java-based software projects.

According to our goal, our aim is to answer the following Research Questions (RQs):

• RQ1. What PMD-related problems are typically selected by students?
Motivation: This RQ explores what type of quality issues students are addressing using the help of the model. It
explores whether students naturally gravitate toward certain kinds of problems (e.g., performance, or design-
related issues). The findings can shed some light on the feasibility of this learning activity in educating students
to perform effective code reviews and quality control.
Measurement: We report the types of issues that are being addressed, clustered by PMD ruleset categories.

• RQ2. What type of issues typically takes longer to be fixed?
Motivation: This RQ investigates which PMD ruleset takes a longer time to be fixed by students, despite the
use of ChatGPT. The finding raises educators’ awareness of types of issues that are difficult for students to
understand and address. Understanding which issues take longer to fix allows educators to pinpoint where
students struggle the most (e.g., whether due to the complexity of the issues, unfamiliarity with certain coding
practices, or inadequacies in their debugging skills).
Measurement: We examine the resolution time taken by students to fix each ruleset category.

• RQ3. To what extent was ChatGPT successful in addressing the students’ debugging needs?
Manuscript submitted to ACM

6 Eman Abdullah AlOmar

Developer selected PMD tool

PMD generated a list of code
violation

PMD scanned and
 reviewed codeDeveloper selected the

violation to be fixed

1

3

2
4

Fig. 2. PMD workflow.

Motivation: This RQ explores the ability of the language model to correctly explain the rationale of errors, and
to provide potential code fixes when requested. The findings can inform educators about how ChatGPT can
better support students with code improvement and whether LLMs can serve as a reliable educational tool and
complement static analysis tools.
Measurement: We examine students’ feedback to extract the necessary ratios of the language model’s success in
addressing their queries.

• RQ4. What strategies students use to formulate prompts that facilitate effective communication with
ChatGPT?
Motivation: This RQ analyzes students’ approaches to engineer prompts to enhance effective interaction with
ChatGPT. Understanding the prompt strategies students use provides insights into how well they can articulate
problems and interact with AI tools. This also sheds light on whether students need guidance in prompt
engineering.
Measurement: We examine students’ prompt engineering approach to extract the necessary aspects of the
prompts.

• RQ5. Does ChatGPT detect any other quality issues that were not detected by PMD?
Motivation: This RQ investigates the ability of the language model to pinpoint other quality issues that were not
detected by PMD. This RQ sheds light on the effectiveness and complementarity of AI-driven and traditional
static analysis approaches.
Measurement: We report students’ responses to analyze quality issues that were captured by ChatGPT.

• RQ6. What are the response patterns of ChatGPT to student requests?
Motivation: This RQ analyzes the ChatGPT patterns and whether they help in providing insights into ChatGPT’s
performance and effectiveness in addressing student inquiries within an educational context. This RQ sheds light

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education 7

on the refinement and enhancement of ChatGPT’s capabilities to better meet the diverse needs of students and
educators.
Measurement: We report ChatGPT’s response patterns to analyze quality issues.

As part of this paper’s contributions, we provide the assignment description, dataset, and tool documentation for
educators to adopt and extend.

3.2 Course Overview

Software Quality Assurance course, available at the undergraduate and graduate levels, features two weekly sessions of
1 hour and 15 minutes each. This course delves into the principles of software quality and maintenance, introducing
challenges associated with different aspects of software evolution, and providing tools to address these issues. It also
explores various software analysis and testing concepts, along with the practical tools commonly used as industry
standards. Students undertake several practical assignments, focusing on software quality metrics, code refactoring,
bug reporting, unit and mutation testing, and managing technical debt. Course deliverables include five individual
homework assignments, a scholarly article reading and presentation, and a long-term group project.

3.3 PMD

Programming Mistake Detector (PMD), an open-source static code analysis tool, reviews source code written in
up to 16 different programming languages to identify frequent programming concerns, such as unsafe threading,
over-complicated classes, and violations of naming conventions. These issues are categorized into eight groups: ‘Best
Practices’, ‘Code Style’, ‘Design’, ‘Documentation’, ‘Error Prone’, ‘Multithreading’, ‘Performance’, and ‘Security’. Each
problem is detected using specific detection rules. PMD utilized a set of rules to evaluate the quality of the code
according to the focus areas. In total, 33 configurations of the rule set were used for Java projects. The rulesets can also
be customized according to the user’s preference. In addition, violations of rules are measured on a priority scale of 1
to 5, with 1 being the most severe and 5 the least. In addition to the 8 categories mentioned above, PMD categorizes
the rules according to five priority levels (from P1 ‘Change absolutely required’ to P5 ‘Change highly optional’) [27].
The tool has become popular, as it can be integrated with modern CI/CD servers. As shown in Figure 2, PMD can be
run as an Integrated Development Environment (IDE) plugin, where the current project is scanned and a set of issues
and violations are reported. As an illustrative example, Figure 2, shows a step-by-step scenario to automatically detect
the code violation instance. Once the user opens the Java file and selects the PMD tool, it scans and analyzes the code.
Once the scan is completed, the PMD tool window displays a list of identified code violations. The user can then click
on a specific violation rule (e.g., ExcessiveMethodLength), and apply the necessary fix.

The use of static analysis tools has been extensively studied (e.g., [30, 37, 39]). The choice of PMD is motivated
by different factors: its widespread use in the Java community and its maturity (i.e., it has been available since 2002
[47]), and works with Java source code to find coding style problems, which is not the case with FindBugs and JLint,
which work with byte code and focus on finding programming errors and neglecting programming style issues [37].
CheckStyle focuses more on readability problems compared to PMD, which tends to highlight suspicious situations in
the source code [36].

Manuscript submitted to ACM

8 Eman Abdullah AlOmar

Original Java method containing PMD violations ChatGPT shared conversation

… // We omit the remaining parts to simplify paper presentation

Modified Java method based on the ChatGPT response

1 2 3

4

Is this appropriate code change action?

Fig. 3. ChatGPT in action showing the resolution of ExcessiveMethodLength PMD issue.
Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education 9

Table 2. Participant professional development experience in years.

Years of Experience Programming Experi-
ence (%)

Java Experience (%) Industry Experience
(%)

none 0 (0%) 0 (0%) 20 (19.6%)
< 1 4 (3.9%) 42 (41.2%) 40 (39.2%)
1-3 58 (56.9%) 51 (50.0%) 33 (32.4%)
4-6 36 (35.3%) 8 (7.8%) 7 (6.9%)
7-10 3 (2.9%) 1 (1.0%) 1 (1.0%)
> 10 1 (1.0%) 0 (0%) 1 (1.0%)

3.4 Teaching Context and Participants

The study involves one assignment in the software quality assurance course. In this study, the course was taught
in two private institutions located in the northeastern United States: Stevens Institute of Technology (Stevens) and
Rochester Institute of Technology (RIT). 60 students were enrolled in the course for Stevens and 95 at RIT. Although
both institutions share similar geographic locations and private statuses, the instructors collaborated closely to ensure
consistency in the course content. Both instructors used the same slides and materials and met regularly to coordinate
the assignment. This study was approved by the Institutional Review Board (IRB). All participants provided their
informed consent before participating in the study. Before taking on the assignment, students had been introduced
to various aspects of coding and design quality: (1) understanding code quality by learning concepts and metrics for
assessing software quality, (2) identifying code smells to recognize poor programming practices that violate design
principles, (3) mastering code refactoring with strategies to enhance software quality, and (4) managing bugs with
techniques for identifying and resolving software issues. The assignment accounted for 7.5% of the final grade and was
due two weeks after these four sessions.

In total, 155 students completed the assignment.This diverse set of 155 submissions allowed us to assess how ChatGPT
suggestions varied between different levels of programming proficiency. This helps highlight the tool’s adaptability, or
lack thereof when faced with different student needs. The programming experience of the respondents ranged from
1 to more than 10 years, their Java experience ranged from 1 to 10 years, and their industry/coop experience ranged
from 0 to more than 10 years. Table 2 summarizes students’ experience in programming, Java experience, and industry
experience.

3.5 Assignment Content and Format

Assignment Design. Initially, students were instructed to analyze a particular version of Java software that had been
approved by the instructor, ensuring it is not only popular but also compiles correctly, as PMD necessitates this. The
reason for allowing students to select a project is to let them choose one that is comfortable and that fits their interests.
For those students who preferred not to find their own project, a pre-compiled list by the instructor was provided (refer
to Table 3). These projects were chosen because they are known to contain diverse software defects. Following this, the
students were instructed to set up and run PMD to assess the production code of their selected project. They could
choose to use either the standalone version of the tool or the Eclipse plugin, which helps them become familiar with
the coding environment while reducing the setup complexity. When PMD was executed, students needed to identify
at least 10 warnings, ensuring that each applicable category was represented by at least one warning. This method
guarantees exposure to a wide range of issues, from design to multithreading, and documentation. It also enriches the
learning process, as students must develop various solutions rather than repeatedly using the same one. However, they
had the freedom to decide which specific instances to address. This inherently requires them to review several warnings

Manuscript submitted to ACM

10 Eman Abdullah AlOmar

in all categories, increasing opportunities for incidental learning. In addition, allowing students to choose the code
fragments to examine helps to build their confidence in evaluating warnings.

Finally, the students utilize ChatGPT to resolve PMD issues, guided by an online questionnaire. For designing our
survey, we adhered to the methodological guidelines by Kitchenham and Pfleeger [25]. The survey is split into two
parts. The initial part consists of demographic questions about the participants. The subsequent part explores their
experiences with using ChatGPT to address PMD issues and their perceptions of ChatGPT’s usefulness. Following the
recommendations by Kitchenham and Pfleeger [25], our survey comprises 6 open-ended questions and 16 multiple-
choice questions, with an optional “Other” choice, enabling participants to express any additional thoughts not covered
in the list. As observed in Table 9, each survey question was developed to focus on particular aspects of the research
questions.
Pilot Study. We conducted a preliminary study involving two students to improve the experimental tools and clarify
the instructions of the experiment. After this pilot study, we iteratively refined both the protocol and the assignment
questions. The pilot study participants were undergraduate Software Engineering students. One key insight we gained
was the importance of effective, prompt engineering when using ChatGPT, which led us to adjust the survey questions
for a more detailed exploration of the topic. Consequently, we restructured the assignment and opted not to include
data from the pilot study in our analysis. In summary, the students followed these steps:

(1) Install the PMD.
(2) Run PMD on a project of students’ choice and select 10 issues of different types.
(3) Use ChatGPT to analyze the issues and decide on whether to fix them and what is the appropriate code change

action.
(4) Report the findings for each issue: (a) the source code, (b) the type of issue, (c) how long it took to check it / fix it,

and (d) the code snippet.
(5) Add to the report a concise comment on the experience with ChatGPT (optional).

The evaluation of the artifacts of the submissions was based on 1) the assessment of the students’ ability to understand
the type of issues (concept understanding); and 2) the assessment of whether students have provided acceptable fixes or
proper justification in both cases or accepted or rejected PMD’s recommendation (program analysis and evolution).
Students’ subjective perception of the code was excluded from the evaluation process, as it could have introduced bias
into the experiment. Specifically, students might not provide genuine feedback on the quality of the code due to the
potential pressure of being graded or their desire to align their answers with what they believe instructors expect. This
could lead them to fill out surveys arbitrarily rather than based on an honest assessment of the code. Furthermore,
feedback was anonymous and was not mandatory to increase the magnitude of PMD and ChatGPT usage experience.
Although feedback was optional, all students completed it. Figure 1 shows an overview of the setup and execution of
our experiment.

3.6 ChatGPT Usage

Similar to PMD training, the students were equipped with essential background knowledge to utilize ChatGPT (version
3.5). Our focus on students’ engagement with the language model led us to clearly instruct them to report all tool usage
via a specified survey link. Figure 3 illustrates a PMD issue encountered during the analysis of the GanttProject3. This
specific issue, labeled as ExcessiveMethodLength, was found in the paintCalendar201d(Graphics g) method of
3https://github.com/bardsoftware/ganttproject

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education11

the GanttGraphicArea.java file. PMD evaluated this as an ‘Urgent’ violation due to a CognitiveComplexity of 50, a
CyclomaticComplexity of 39, and an NPathComplexity of 1140, each exceeding the default acceptable limits. ChatGPT
recommends refactoring by breaking the extensive method into smaller, manageable parts and offering a suggested
code fix. Students can implement this fix if they agree with it. As depicted in the figure, adopting the proposed solution
successfully eliminated CognitiveComplexity and NPathComplexity issues, and reduced CyclomaticComplexity to
12.

3.7 Data Analysis

We analyze the responses to the open-ended question to create a comprehensive high-level list of themes by adopting
a thematic analysis approach based on guidelines provided by Cruzes et al. [15]. Thematic analysis is one of the
most widely used methods in the software engineering literature [2, 3, 42]. This is a technique for identifying and
recording patterns (or “themes”) within a collection of descriptive labels, which we call “codes”. For each response,
we proceeded with the analysis using the following steps: i) Initial reading of the survey responses; ii) Generating
initial codes (i.e., labels) for each response; iii) Translating codes into themes, sub-themes, and higher-order themes; iv)
Reviewing the themes to find opportunities for merging; v) Defining and naming the final themes, and creating a model
of higher-order themes and their underlying evidence. The above-mentioned steps were performed independently by
two annotators. An annotator conducted the labeling of the students’ comments independently of the other annotator
who was responsible for reviewing the currently drafted themes. By the end of each iteration, the annotators met and
refined the themes to reach a consensus. For example, the annotators showed strong agreement when coding responses
related to the ‘automation’ theme for the following response: “The advantages of ChatGPT include its affordability,

capacity for automating tedious processes”. In contrast, the annotators disagreed on how to categorize certain responses
between ‘functionality’ and ‘usefulness’ in the following response, “Overall I had a positive experience with ChatGPT as it

was able to detect the errors that PMD reported. However, for the last 5 code segments I tested, it started generating code that

produced compile errors and did not always generate code in Java on the first few attempts”. To resolve this disagreement,
the annotators discussed the difference between ‘functionality’ and ‘usefulness’ in this context. Functionality refers
to how well the tool performs its intended tasks. In this case, the response mentions specific technical aspects of
ChatGPT’s performance. Usefulness refers to the overall value or benefit that the tool provides to the user, regardless
of its technical performance. After review, they agreed that the response could be coded under ‘functionality’. It is
important to note that the approach is not a single-step process. As the codes were analyzed, some of the first cycle
codes were subsumed by other codes, relabeled, or dropped altogether. As the two annotators progressed in translation
to themes, there was some rearrangement, refinement, and reclassification of the data into different or new codes. We
used the thematic analysis technique to address RQ3.

4 RESULTS

4.1 What PMD-related problems are typically selected by students?

In Tables 4 and 5, we illustrate PMD rules that are perceived by students. It is worth noting the diversity of these
warnings/violations, i.e., they spread from warnings regarding style, code practice, and documentation, to warnings
dealing with design and performance.

Manuscript submitted to ACM

12 Eman Abdullah AlOmar

Table 3. The list of open-source projects used in the assignment [4].

Project # commits # contributors Domain

Ant 14,887 64 Java builder
GanttProject 4,361 38 Project management
Hutool 4,074 191 Code design
JCommander 1,009 64 Command line parsing
JFreeChart 4,218 24 Data visualization
JHotDraw 804 3 Data visualization
Log4J 12,211 137 Logging
Nutch 3,293 46 Web crawler
Rihno 4,119 80 Script builder
RxJava 6,004 289 Java VM
Xerces 6,463 5 XML parser

Upon analyzing students’ assignment solutions, we cluster the issues according to the PMD ruleset categories listed
in the PMD official documentation4, namely, ‘Best Practices’, ‘Code Style’, ‘Design’, ‘Documentation’, ‘Error Prone’,
‘Multithreading’, ‘Performance’, and ‘Security’. These categories were captured at different levels of granularity (e.g.,
package, class, method, and attributes).

In the rest of this subsection, we provide a more in-depth analysis of these categories and the associated PMD rulesets.
These categories were defined in our previous work [1], and we include them in this paper to make it self-contained.

Category #1: Best Practices. This category pertains to the guidelines that uphold widely recognized best practices,
essential for a comprehensive evaluation of software quality. It helps students identify code that can violate fundamental
design and coding principles or highlight areas that are potentially inefficient or difficult to maintain. Examples
of the rules perceived by students as true positives include LooseCoupling, SwitchStmtsShouldHaveDefault, and
JUnitAssertionsShouldIncludeMessage.

Category #2: Code Style. This category refers to the rules that enforce a specific coding style. Most prominently,
brace and naming rules consist of good coding practices regarding code blocks and naming conventions. This can
be illustrated briefly by rules IfStmtsMustUseBraces and ClassNamingConventions, which shows that it should be
followed by braces even if it is followed only by a single instruction and class names should be in upper camel case
naming conventions to improve the naming quality in the code and reflect the actual purpose of the parameters and
variables.

Category #3: Design. This category pertains to the guidelines that aid in identifying design problems. Students
documented design rules incorporating best practices related to the general structure of the code. By way of illustration,
AvoidDeeplyNestedIfStmts rule indicates avoiding deeply nested if statements and GodClass shows the violation of
single responsibility principles that increases the complexity of the code (e.g., CyclomaticComplexity).

Category #4: Documentation. This category pertains to rules associated with code documentation. Documentation
involves explaining code modifications in plain language, which is essential as it discloses the developer’s reasoning for
their coding choices. CommentRequired rule is a good illustration of this group and shows that students seem to pay
attention to the quality of the code comments.

Category #5: Error Prone. This category pertains to the guidelines used to identify constructs that are either
broken, extremely confusing, or prone to run time errors. A crucial element in preventing such problems is ensuring
readability. If the students refactor the code to be easily read and understood, there is less chance for misunderstandings
4https://pmd.sourceforge.io

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education13

and coding mistakes, so students spend less time comprehending code. This is exemplified by error-prone-related rules
such as AvoidDuplicateLiterals and AssignmentInOperand.

Category #6: Multithreading. This category encompasses rules that identify problems when managing multiple
execution threads. For example, PMD recommends AvoidUsingVolatile to be avoided as the keyword ‘volatile’ is
used to fine-tune a Java application and requires the expertise of the Java Memory Model.

Category #7: Performance. TThis classification pertains to guidelines that identify inefficient code. Since perfor-
mance plays a vital role, students are encouraged to follow best coding standard practices such as AvoidArrayLoops
and AvoidInstantiatingObjectsInLoops rules to avoid degrading the performance of the code.

For our study, we analyzed a total of 1,658 rules of students’ selected issues violating 195 distinct PMD rules. The
students’ selection of PMD rulesets was crucial in determining whether ChatGPT could reliably identify stylistic and
best practice violations in the code. Clearly depicted by Tables 4 and 5, there are various violations chosen by the
students to be fixed by ChatGPT. Although our results are not intended to be generalized, as they require further
experiments with larger sample sizes, our experience shows the success of ChatGPT in triggering students’ critical
thinking about the problems outlined in the issues. PMD has attracted them successfully to explore the various types of
problems, so students can utilize ChatGPT to code the needed fix for the problem. Moreover, it achieves another goal
of our maintenance class, as it trains students to comprehend and act on code that they do not own.

Looking at the PMD rules, Figure 4 depicts the percentages of PMD rules, clustered by category. As can be seen, the
most common PMD ruleset category concerns ‘Code Style’, representing 32.3% of the issues. This observation is in line
with the findings of previous studies that describe that most code reviewers look for style conformance when evaluating
code quality [43]. The next most common categories are ‘Best Practices’, ‘Design’, and ‘Error Prone’, representing 21.1%,
17.4%, and 12.3% of the issues, respectively. This might indicate that students have different perspectives on whether
developers follow the best practices, improve the architecture design of code, or make code less susceptible to errors.
The categories ‘Documentation’, ‘Performance’, and ‘Multithreading’ had the least number of issues, with a ratio of
8.5%, 6.8%, and 1.7%, respectively.

Summary for RQ1: Among the 1,658 analyzed issues, the most common PMD ruleset category concerns ‘Code

Style’, representing 32.3% of the issues.

4.2 What type of issues typically takes longer to be fixed?

Figure 5 shows that issues belonging to the ‘Design’, ‘Error Prone’, and ‘Best Practices’ categories (` = 7.19, ` = 3.81, and
` = 3.51, respectively) tend to be more time-consuming for students to address. Notably, ‘Design’ issues show a notable
increase compared to other categories. Upon closer examination, we observed a trend: submissions where students
could not receive support with addressing some type of ‘Design’ issues, specifically GodClass problems. God Classes
are characterized by their excessive size and the accumulation of numerous responsibilities as they control and monitor
multiple other classes. Their presence poses challenges for program maintenance and understanding [8]. We speculate
that design issues take significantly longer to be resolved due to substantial modifications that must be made for God
classes. In fact, fixing a God class requires its decomposition into multiple classes, which requires the separation of
multiple tangled concerns while maintaining their coupling to other classes. The needed fix translates into a series
of refactorings that go beyond changing one or a few instructions, such as when fixing other types of issues. When

Manuscript submitted to ACM

14 Eman Abdullah AlOmar

Table 4. PMD rules that were chosen by students, broken down by category.

Category Rule Category Rule

B
es
tP

ra
ct
ic
es

AbstractClassWithoutAbstractMethod

D
es
ig
n

AbstractClassWithoutAnyMethod

AccessorMethodGeneration AvoidCatchingGenericException

ArrayIsStoredDirectly AvoidDeeplyNestedIfStmts

AvoidPrintStackTrace AvoidThrowingNullPointerException

AvoidReassigningParameters AvoidThrowingRawExceptionTypes

AvoidReassigningCatchVariables AvoidUncheckedExceptionsInSignatures

AvoidReassigningLoopVariables ClassWithOnlyPrivateConstructorsShouldBeFinal

AvoidStringBufferField CognitiveComplexity

AvoidUsingHardCodedIP CollapsibleIfStatements

ConstantsInInterface CouplingBetweenObjects

DefaultLabelNotLastInSwitchStmt CyclomaticComplexity

ForLoopCanBeForEach DataClass

ForLoopVariableCount ExceptionAsFlowControl

GuardLogStatement ExcessiveImports

JUnit4TestShouldUseBeforeAnnotation ExcessiveMethodLength

JUnitAssertionsShouldIncludeMessage ExcessiveParameterList

JUnitTestContainsTooManyAsserts ExcessivePublicCount

JUnitTestsShouldIncludeAssert FinalFieldCouldBeStatic

LiteralsFirstInComparisons FormalParameterNamingConventions

LooseCoupling GodClass

MethodReturnsInternalArray ImmutableField

MissingOverride LawOfDemeter

OneDeclarationPerLine LogicInversion

PositionLiteralsFirstInCaseInsensitiveComparisons ModifiedCyclomaticComplexity

PositionLiteralsFirstInComparisons MutableStaticState

PreserveStackTrace NPathComplexity

PrimitiveWrapperInstantiation SignatureDeclareThrowsException

ReplaceEnumerationWithIterator SimplifiedTernary

ReplaceHashtableWithMap SimplifyBooleanReturns

ReplaceVectorWithList SimplifyBooleanExpressions

SwitchStmtsShouldHaveDefault SingularField

SystemPrintln TooManyMethods

UnusedAssignment UseUtilityClass

UnusedFormalParameter CommentRequired

UnusedImports

D
oc

um
en

ta
ti
on CommentSize

UnusedLocalVariable UncommentedEmptyConstructor

UnusedPrivateField UncommentedEmptyMethodBody

UnusedPrivateMethod

Pe
rf
or
m
an

ce

AddEmptyString

UseAssertSameInsteadOfAssertTrue AvoidFileStream

UseCollectionIsEmpty AvoidInstantiatingObjectsInLoops

UseTryWithResources AvoidUsingShortType

UseVarargs BooleanInstantiation

M
ul
ti
th
re
ad

in
g

AvoidSynchronizedAtMethodLevel ConsecutiveAppendsShouldReuse

AvoidUsingVolatile ConsecutiveLiteralAppends

DoNotUseThreads InefficientEmptyStringCheck

DoubleCheckedLocking InsufficientStringBufferDeclaration

NonThreadSafeSingleton IntegerInstantiation

UnsynchronizedStaticFormatter LongInstantiation

UseConcurrentHashMap OptimizableToArrayCall

UseNotifyAllInsteadOfNotify RedundantFieldInitializer

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education15

Table 5. PMD rules that were chosen by students, broken down by category (Cont’d).

Category Rule Category Rule

C
od

e
St
yl
e

AbstractNaming

C
od

e
St
yl
e

VariableNamingConventions

AtLeastOneConstructor WhileLoopsMustUseBraces

AvoidFinalLocalVariable

Pe
rf
or
m
an

ce

StringInstantiation

AvoidPrefixingMethodParameters TooFewBranchesForASwitchStatement

AvoidUsingNativeCode UseArrayListInsteadOfVector

BooleanGetMethodName UseIndexOfChar

CallSuperInConstructor UseStringBufferForStringAppends

ClassNamingConventions

Er
ro
r
Pr

on
e

AssignmentInOperand

CommentDefaultAccessModifier AssignmentToNonFinalStatic

ConfusingTernary AvoidCatchingThrowable

ControlStatementBraces AvoidDuplicateLiterals

DefaultPackage AvoidFieldNameMatchingMethodName

EmptyControlStatement AvoidFieldNameMatchingTypeName

EmptyMethodInAbstractClassShouldBeAbstract AvoidInstanceOfChecksInCatchClause

FieldDeclarationsShouldBeAtStartOfClass AvoidLiteralsInIfCondition

FieldNamingConventions AvoidUsingOctalValues

FinalParameterInAbstractMethod CloseResource

ForLoopsMustUseBraces CompareObjectsWithEquals

FormalParameterNamingConventions ConstructorCallsOverridableMethod

IdenticalCatchBranches DataFlowAnomalyAnalysis

IfElseStmtsMustUseBraces EmptyCatchBlock

IfStmtsMustUseBraces EmptyIfStmt

LinguisticNaming EmptyStatementBlock

LocalVariableCouldBeFinal EmptyWhileStmt

LocalVariableNamingConventions FinalizeDoesNotCallSuperFinalize

LongVariable FinalizeShouldBeProtected

MethodArgumentCouldBeFinal ImplicitSwitchFallThrough

MethodNamingConventions MissingSerialVersionUID

NoPackage NonStaticInitializer

OnlyOneReturn NullAssignment

PrematureDeclaration OptimizableToArrayCall

ShortClassName ReturnEmptyArrayRatherThanNull

ShortMethodName ReturnEmptyCollectionRatherThanNull

ShortVariable SimpleDateFormatNeedsLocale

UnnecessaryConstructor SuspiciousEqualsMethodName

UnnecessaryFullyQualifiedName UnnecessaryConversionTemporary

UnnecessaryImport UseEqualsToCompareStrings

UnnecessaryLocalBeforeReturn UseLocaleWithCaseConversions

UnnecessaryModifier UseProperClassLoader

UnnecessaryReturn UselessOperationOnImmutable

UnnecessarySemicolon

UseDiamondOperator

UseShortArrayInitializer

UselessParentheses

UselessQualifiedThis

Manuscript submitted to ACM

16 Eman Abdullah AlOmar

Code Style
32.3%

Best Practices
21.1%

Design
17.4%

Error Prone
12.3%

Documentation 8.5%

Multithreading 1.7%

Performance 6.8%

Fig. 4. What PMD-related category have you chosen? [4]

Fig. 5. Boxplots of time taken to fix issues, clustered by PMD ruleset categories.

analyzing students’ prompts for fixing for God classes, we noticed that ChatGPT was unable to propose a fix, mostly
because the input windows of the model cannot receive the needed set of instructions, which represent the God class,
and all its dependencies. providing a snapshot of the God class code would not be sufficient for the model to carry out
a class extraction. The language model was only able to provide examples of extract class refactorings, for relatively
smaller-scale classes. For instance, Figure 6 exhibits ChatGPT response to a student query asking to address a God

Class issue, for a given input class. In general, ChatGPT has input limitations when grasping the various contexts
in large code segments. Due to this limitation, there have been instances where ChatGPT makes suggestions based
on misunderstandings or false assumptions about the code. Through this experiment, students can experience how
ChatGPT performance varies based on the length of the input. Increasing the size of the input can eventually lead to
catastrophic forgetting [20].

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education17

ChatGPT response:

I apologize, but I cannot modify the code as I don’t have access to the entire codebase or
know what the code is supposed to do. However, I can provide an example of how to address the
PMD CommentSize issue based on the code snippet you provided.

Fig. 6. ChatGPT response to a student query to refactor a God Class.

On the other hand, ChatGPT provided more positive answers to student questions related to addressing issues when
they are located in a continuous set of instructions (single location), such as CyclomaticComplexity. ChatGPT was
able to propose the extract method refactoring to break down the methods with a high score of cyclomatic complexity.

Further, our previous work shows that design-related problems generally demand more time for resolution, indicating
a more profound challenge for students [1]. These antipatterns indicate inadequate design or architectural choices,
necessitating that students first grasp the intended design to identify the root causes of the antipatterns. Unlike simpler
issues, this involves more than just following a few instructions; it requires analyzing the methods and classes along
with their architecture. Although empirical research shows that these antipatterns markedly increase error proneness
[23] and impede program understanding [9], there is no agreed-upon method for identifying [34] and remedying them
[26]. Consequently, students may struggle with the subjective nature of these problems and take longer to decide on a
refactoring approach.

Similar to how design patterns are widely used in modeling classes [6, 14, 40], it is important that students also learn
about antipatterns. When students are educated on design patterns, they are tasked with pinpointing the essential
features of common design frameworks that enhance reusability, all while maintaining Object-Oriented design principles.
Yet, existing large and complex systems are known to exhibit the existence of antipatterns [35]. Consequently, students
need to identify symptoms of bad design and programming practices, which is essentially problem-based learning. This
educational approach uses complex practical issues (e.g., antipatterns) to teach concepts (e.g., design principles) [17]. A
key success factor of this approach is its ability to motivate students to design various solutions to address these issues.
Antipatterns stimulate students’ design thinking as they work through their resolution. Since each antipattern offers
several refactoring opportunities, students must justify their selections. This justification can be facilitated by evaluating
design quality using structural metrics, both before and after the refactoring process. Design evaluation is another
aspect that students need to develop. Unlike correcting errors, where testing code for correctness is straightforward,
validating a design change’s effectiveness necessitates actively measuring its impact on quality. The presence of various
possible solutions for a single antipattern can serve as a valuable educational tool, promoting cooperative learning tasks.
This approach enables students to compare their solutions by examining the effects of their refactorings on antipattern
resolutions and overall software quality [1].

Summary for RQ2: ‘Design’ PMD ruleset category takes longer to resolve. Unlike other PMD category, this requires

going beyond one or few instructions, and ChatGPT has a limited understanding of the broader context and the

entirety of the codebase.

Manuscript submitted to ACM

18 Eman Abdullah AlOmar

4.3 To what extent was ChatGPT successful in addressing the students’ debugging needs?

Figure 7 illustrates students’ experiences with ChatGPT across four key areas: (1) effectiveness in resolving problems, (2)
the risk of ChatGPT causing code regression, (3) usage frequency for debugging, and (4) the introduction of additional
errors as identified by PMD. When we asked students “Was ChatGPT able to fix the buggy code?”, 85.9% of the students
affirmed ChatGPT’s efficacy in problem-solving, while 14.1% disagreed. Overall, students expressed satisfaction with
ChatGPT’s assistance. Regarding code regression, 79.6% of students did not encounter regression, while 20.4% did.
In terms of usage frequency, 40% used ChatGPT once, and 21.3% used it twice. The remaining students (38.7%) used
ChatGPT between three or more times. Concerning the potential for additional violations detected by PMD, 86.4% of
the students reported no such errors in ChatGPT , but some indicated otherwise.

The success of using any language model heavily depends on students’ ability to properly prompt it. Therefore, one
of this work’s outcomes is sensibilizing students to the power of prompt engineering, in the context of debugging. As
depicted in Figure 8, an analysis of the initial prompts from students indicates that 27.7% believe that simply pasting the
erroneous code is enough for ChatGPT to reveal the prompt’s intent. Meanwhile, 68.6% of students explained that they
supplement the buggy code fragment with its error description to give more context. Additionally, 20.6% stated that
they paste the faulty code along with a textual guide on how to repair it. A small number of students indicated that
they provide both buggy and corrected code pairs, requesting ChatGPT to perform similarly with the problematic
code provided. Besides these activities, 2.9% of the students mentioned in the “other” option: “asking ChatGPT that the

PMD violation still remained when it could not fix the code”, “asking ChatGPT how to fix the error in general before copy

pasting the offending code”, “prompted ChatGPT with the actual line that was causing the error and asked it if there was

something specific in the code segment that could be optimized”, “asked ChatGPT to provide an example of how a similar

situation could be fixed”, and “ChatGPT says this is a false positive and is descriptive of what the variable is representing

and I agree with it”. Figure 8 shows how the students’ prompts are not uniform, where the majority of students argue
over how to extract the necessary action from the models, while others overestimate the capabilities of the model, as
outlined in previous studies that have proven that ChatGPT is susceptible to hallucination when it comes to coding
semantic structures [31, 52]. So, experiencing the potentially inappropriate results of the model would raise the students’
awareness of its limitations. In addition, it helps students refine their prompts, as shown in Figure 7 where most students
have used more than one prompt per issue (60%).

Furthermore, 68.6% of the students’ prompts were zero-shot, i.e., students rely on the generative ability of the model
to either understand an issue, or to propose its corresponding code fix. Zero-shot learning challenges the model to make
a decision over presumably unseen data [54]. The model relies on approximating the input with previously trained
code. For instance, as shown in Figure 9, the student asks the model to reduce the cyclomatic complexity of an input
source code. The same prompt can be augmented by adding a label to the unseen data, i.e., one-shot [18]. For example,
in Figure 9, mentioning how the reduction can be performed can guide the model towards the decision to take (method
extraction). Other students opted for a few-shot learning by entering pairs of buggy and fixed code fragments and
asked ChatGPT to propose similar fixes for an alternative buggy code. Few-shot learning is a response when dealing
with complex tasks to steer the model towards better decision making by allowing in-context learning from provided
examples [50]. In Figure 9, the input shows examples of code changes that address the complexity of a given method.

Diverse prompts used in our activities have encouraged the students to consider strategies to query the model to
counter its inherent limitations. This has encouraged a critical evaluation of ChatGPT’s responses instead of accepting
them as the ground truth. For example, 20.4% of students observed regression in their code after implementing ChatGPT’s

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education19

Yes
85.9%

No
14.1%

(a) Was ChatGPT generally helpful in addressing PMD
issues?

Yes
20.4%

No
79.6%

(b) Did one of ChatGPT’s proposed solutions cause
regression in the code?

1
40%

2
21.3%

3
11.3%

4
7.1%

5 or more
20.3%

(c) How many times have you interacted with ChatGPT?

Yes
13.6%

No
86.4%

(d) Did the fix contain other issues detected by PMD?

Yes
7%

No
93%

(e) Did ChatGPT detect any other issues that were not
detected by PMD?

Fig. 7. Student’s attitude toward utilizing ChatGPT for bug resolution.

generated code, with issues ranging from compiler errors to failed unit tests. Such difficulties could stem from bugs
in ChatGPT’s code outputs or improper integration by students into their codebases, and sometimes even inaccurate
queries from students. Although it would be interesting to dive into this analysis more in-depth, our primary aim
was to raise students’ awareness of the error-prone nature of querying language models, emphasizing the importance
of verifying results prior to implementation. We also aimed to alert students to the existence of multiple querying
techniques, which are known in data science curricula, without providing any prompt engineering training.

In Table 6, we report the main thoughts, comments, and suggestions about the overall impression of the usefulness,
usability, functionality, and recommendation of ChatGPT, according to the labeling performed. The table also presents
samples of the students’ comments to illustrate their impressions of each theme.

Usefulness. Overall, the respondents identified five key benefits of ChatGPT: automation, quality, scope, awareness,
and experience. Students highlighted ChatGPT’s efficiency in fixing bugs automatically, its cost-effectiveness, its
capability to automate tedious debugging, and its ability to generate accurate and comprehensive responses. About

Manuscript submitted to ACM

20 Eman Abdullah AlOmar

Copy paste buggy
code fragment

Copy paste buggy
code fragment

& error description

Copy paste buggy
code fragment
& added textual
description of
how to fix it

Show pairs of buggy
& fixed code fragments,
& asked the model to
do the same thing

for a given buggy code

Other

0

10

20

30

40

50

60

70

27.7%

68.6%

20.6%

1.9% 2.9%

Fig. 8. How did you use ChatGPT to fix buggy code?

85.9% of the students noted that ChatGPT is beneficial as it provides both explanations of the problem and solutions.
Furthermore, 23.22% remarked that it is an excellent tool for learning, particularly for beginners in software quality and
debugging. Some students (20.64%) noted that ChatGPT was quick in analyzing issues within contiguous instructions,
but struggled with larger problems such as GodClass and DataClass. Finally, 4.5% of students stated that identifying
issues enhances readability, thereby improving the overall quality of the code.

Usability. According to student feedback, important aspects of usability highlighted were documentation, ease of
use, explainability, and the user interface. Approximately 28.38% of students mentioned that the tool is easy to use,
features a friendly interface, and clarifies how each bug fix was generated and how to prevent similar issues later.
Additional remarks noted that the use of these large language models requires careful adjustment of the model output
due to a lack of originality and possible biases.

Functionality. Based on feedback from the students regarding the tool’s capabilities, 16.77% of the responses
praise ChatGPT’s features for correction, detection, and debugging, expressing satisfaction with multiple aspects of its
functionality. They noted that this feature aids in understanding poor programming practices in practical situations.
Furthermore, the students mentioned that it allows them to apply various methods to solve problems.

Recommendation. Based on students’ feedback, we have derived suggestions to improve LLM. Notably, 3.8% of
the comments included specific recommendations to enhance the tool’s functionality. These recommendations pertain
to context, promptness, accuracy, precision, and verification. Students acknowledged the transformative potential of
ChatGPT in the programming workflow due to its capacity to generate diverse solutions and adapt to a developer’s
method. However, others pointed out how ChatGPT can eventually hamper developers’ creativity. They foresee
ChatGPT revolutionizing coding processes in the future. Certain students noted ChatGPT’s efficiency in addressing
language-specific coding errors when well explained, alongside solving PMD default issues. However, querying becomes

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education21

Zero-shot learning:

You are a Java expert. How do I fix this section of code that has a cyclomatic complexity of
21:
“‘ Original code ”’

One-shot learning:

You are a Java expert. Can you fix this section of code that has a cyclomatic complexity of
21 by breaking down the code into smaller methods:
“‘ Original code ”’

Few-shot learning:

You are a Java expert. I provide you with a pair of fixed and buggy code fragments, and I
request that you apply similar fixes to a newly given buggy code.

An example of buggy code that has a cyclomatic complexity of 21:
“‘ Original buggy code ”’

An example of fixed:
“‘ Original fixed code ”’

Here is the newly buggy code, please propose similar fixes for this buggy code:
“‘ Newly buggy code ”’

Fig. 9. Different types of learning settings used by students when prompting ChatGPT in the context of debugging.

challenging when errors are distributed across multiple locations. Such limitations could be addressed with formal
training in prompt engineering. Thus, careful use and verification from other sources are essential. The reliability of
ChatGPT’s responses depends heavily on the quality of the prompts and the training data, potentially affecting the
response precision and its applicability to specific tasks. Students highlighted ChatGPT’s utility in numerous scenarios,
but noted its difficulty in resolving issues without context. For example, ChatGPT might find the code comprehensive
and easy to read, but when students mention the problem with the code, it recognizes the issue. The more detailed the
description, the more specific and accurate the solution made by ChatGPT. However, some issues require investigating
various coupled files that may or may not be present as part of the input. Therefore, even after inputting a proper
description of the buggy code, there are no guarantees on the model’s ability to debug. In addition to the detailed
description of the issue, providing the most relevant code fragments is key to avoid dragging ChatGPT attention to
unnecessary details or bug-free code fragments.

Manuscript submitted to ACM

22 Eman Abdullah AlOmar

Table 6. Student’s insight about the usefulness, usability and functionality of ChatGPT [4].

Theme Sub-theme Example (Excerpts from a related student’s comment)

Usefulness

Automation “The advantages of ChatGPT include its affordability, capacity for automating tedious processes, and ability to deliver precise
and thorough responses for customer service departments.”

Quality

“PMD is a useful tool that can help identify potential issues in code and provide suggestions for improvement. It can also help
enforce coding standards and best practices, leading to cleaner, more maintainable code. In my experience, both ChatGPT
and PMD have been valuable tools. ChatGPT has been able to quickly provide helpful responses to various questions, while PMD
has been able to catch potential issues that may have been missed during manual code reviews. However, it’s important to note
that these tools should be used as aids and not as replacements for human analysis and judgment. Overall, I believe that the use
of AI language models and code analysis tools like PMD can greatly benefit developers and lead to better code quality and
efficiency.”

Scope

“ChatGPT was very informative about giving context and definitions of errors, and was even able to provide definitions and
recommendations specific to the PMD plugin. Negatives included when code errors were too vague or covered code segments that
were too large for ChatGPT to understand. I conclude that ChatGPT is useful for refactoring small segments of code like
fixing errors in smaller methods, nested if statements, and generally cleaning up the code to run faster, but not for larger issues
like god classes.”

Awareness
“ChatGPT was extremely useful. It had all of my answers I needed, and even was able to answer other questions for me.
When it fixed the code, it also gave explanations to each change it made to the code. Overall, ChatGPT was an extremely useful and
easy to understand.”

Experience “The refactored code given by ChatGPT was bug free most of the time but at few times there were bugs in it . Overall the chatgpt is
very nice application specially for those who are begineers in software development and programming.”

Usability

Documentation
“My experience with ChatGPT was largely positive. The tool was able to quickly identify a range of issues in the codebase, including
code style issues, best practices, performance issues, and design problems. The reports generated by ChatGPT were very
informative and easy to understand, providing clear explanations of each issue and suggesting steps to fix them.”

Ease of use

“It was quite easy to fix errors using ChatGPT. The trick is to find the right prompt so that it understands what it needs to do
quickly rather than going around explaining the issue without providing the fix. However, since ChatGPT only had limited code
visibility (the code snippet provided by the user), it generated a few fixes which would break the code (ex change variable names,
use packages without importing, etc.). We can’t say that the code fix provided by ChatGPT was entirely wrong though. Overall, it is
easy and quick to use ChatGPT to fix most PMD Errors, with a little bit of oversight.”

Explanability “when you’re working on a small scale project it’s extremely useful. Can also explain basic concepts you might have forgotten
very well.”

User interface
“Chatgpt has a user-friendly interface. It provides precise and thorough responses for customer service teams. However, there
are also potential disadvantages to using these models, such as the need to carefully adjust the model’s output. It lacks originality
and might give biased output.”

Functionality

Correction
“ChatGPT would sometimes misunderstand what error I was trying to indicate, or would be confused by the fact that I
was giving it a code excerpt rather than the full code, which was too large to provide to it. Its corrections sometimes also
misunderstood the purpose of an excerpt and would slightly alter the logic, but this was expected.”

Detection
“Overall I had a positive experience with ChatGPT as it was able to detect the errors that PMD reported. However for the last 5
code segments I tested, it started generating code that produced compile errors and it didn’t always generate the code in java
on the first few attempts.”

Debugging
“ChatGPT is usually unable to identify the problems the pmd extension provides. However when it does it is able to go into great
detail about the problems, and either fix the problems entirely or give guidance as to how to fix them. I enjoy using chatgpt for
debugging and other things and I believe it is a great academic learning tool.”

Recommendation

Context

“ChatGPT was definitely helpful to fix errors. However, many errors required a lot more context than what chatgpt accepts
and that leads to incorrect fix or sometimes makes the problem worse. There is also the problem with it dropping context time
and again. I feel chatgpt is best considered as a supplement to the existing options like stackoverflow but cannot be blindly trusted.
That being said it is still a great upgrade from stackoverflow and may be in future be more accurate. Overall a positive experience.”

Promptness
“It was very useful, there was a bit of a learning curve as it took a few attempts to understand what exactly to prompt it to give you
the information you want to know. I had used it before so thats why I understood how to problem solve in that way but chat GPT
its self doesn’t really suggest other ways to prompt if it doesnt get enough to give an answer.”

Accuracy

“GPT is not primarily designed for debugging but can assist in identifying syntax errors and offering debugging strategies. It can
also suggest alternative solutions and offer insights into the program flow and potential issues. However, its suggestions may not
always be accurate, and it may not have a deep understanding of complex code structures, making it less effective for
identifying all types of errors.”

Resolution
“While ChatGPT was able to identify issues in the code, it did not always provide suggestions for how to fix them. This meant
that developers still needed to have a good understanding of coding best practices in order to address the issues identified by
ChatGPT.”

Verification

“ChatGPT is perfect as a code-companion but not as a replacement. The reason for this is because ChatGPT is unable to find
context of the applications of code. This makes it more prone to missing logical bugs like the fall-through of a switch-case statement.
Having a human-in-the-loop who is able to understand the applications and has a good idea of the overall structure of the
project is much more desirable.”

Summary for RQ3: Overall, this assignment helps cultivate analytical and critical thinking skills as students

engage in the debugging process. In addition, it teaches students to be skeptical towards the use of ChatGPT by

shedding light on the limitations of ChatGPT in identifying and solving problems. It highlights the importance of

incorporating other traditional static analysis tools and techniques to improve the accuracy and efficiency of their

predictions. Furthermore, the involvement of a human-in-the-loop, capable of comprehending code, can be highly

valuable and desirable.
Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education23

4.4 What strategies students use to formulate prompts that facilitate effective communication with
ChatGPT?

Upon analyzing students’ strategies in engineering the prompts, we observe that they focus on three main aspects that
we refer to as the 3 Cs: Clarity, Complexity, and Context. In the following, we present samples of student prompts to
illustrate these three aspects.

• Clarity. Students ensure clarity in their question or request to ChatGPT, as ambiguous prompts may lead to
misunderstandings or irrelevant responses.

“Provide me necessary steps to fix this cyclomatic complexity for this code keeping the functionality same. code:

[…]”.
• Complexity. Students consider the complexity of the prompt and whether it can be adequately addressed within

the constraints of a single response.
“Hello, I have a piece of Java code that has been flagged for a PMD violation. I need help identifying whether the

violation is a true or false positive and, if true, how to fix it. Here are the details: Code Snippet: char[] charSource

= null; PMD Issue Type: Performance Violation Reported: RedundantFieldInitializer Question: The type of issue

Is this a true or false positive PMD violation? If it’s a true positive, what are the necessary steps to fix it?”.
• Context. Students provide contextual details when asking ChatGPT to generate accurate responses.

“I’m using PMD to detect code violations in a Java project. It has found a violation of UnusedLocalVariable in

the following code block […]. Can you fix this and remove the unused local variable while retaining the same

functionality?”.

We believe that these 3 Cs not only enhance students’ communication skills and interaction with ChatGPT, but
also foster key learning outcomes that involve, but are limited to, critical thinking, problem-solving, and creativity.
Considering the Complexity and Context of the prompts allows students to think critically about the coding issues.
Furthermore, crafting the prompts with Clarity challenges students to think about the desired outcome of their
interaction with ChatGPT. This can also foster creativity as this requires students to think creatively about the questions
they need to ask ChatGPT and the responses they anticipate.

Summary for RQ4: Crafting prompts to ChatGPT with Clarity, Complexity, and Context fosters essential learning

outcomes, including improved critical thinking, problem-solving abilities, and creativity.

4.5 Does ChatGPT detect any other quality issues that were not detected by PMD?

Figure 7e illustrates the percentages of ChatGPT’s quality issues that were not detected by PMD. As can be seen, 93% of
the students indicated that ChatGPT did not detect other issues that were not detected by PMD. In Table 7, we show the
quality issues identified by ChatGPT that may have been overlooked by PMD. These issues are related to improving
the documentation (e.g., AddComments), readability (e.g., UseConsistentIndentation), and quality in general (e.g.,
ReduceCouplingBetweenPackages). It is worth noting that although ChatGPT identified additional issues not detected
by PMD, some of these issues are considered PMD rules. However, PMD did not flag them as violations for the specific
code fragment that students asked about. We present samples of ChatGPT responses to illustrate these quality issues.

“ It is good practice to always use curly braces for the if and else statements, even if there is only one line of

code to be executed. This can help to avoid errors when more code is added later.”

Manuscript submitted to ACM

24 Eman Abdullah AlOmar

“The code is using catch-all exception handling, which can be problematic. It is generally better to catch only

the specific exceptions that you expect to be thrown and to handle them accordingly.”
“Test names should be descriptive and follow a consistent naming convention.”
“It’s a good practice to use the @Override annotation when overriding a method from a parent class or interface.

This can help catch errors at compile time if the method signature changes in the future. So you could add the

@Override annotation to the clone method.”

Furthermore, we report in Table 8 PMD rules that were flagged by ChatGPT as false positive. Clearly, most of the
violated rules are accepted by ChatGPT as true positives, and a few of these violated rules (i.e., 12 rules) are rejected
and perceived by ChatGPT as false positives. These rules mainly belong to ‘Code Style’ category.

While analyzing students’ submissions, we realized some disagreement cases between quality issues detected by
PMD and ChatGPT. We believe these cases can be attributed to the following factors:

Detection methodology. PMD focuses on the syntactic and structural aspects of the code. It analyzes code to
identify potential quality issues based on predefined rulesets. On the other hand, ChatGPT relies on natural language
processing techniques to understand user’s prompts, and generate responses accordingly which may involve potential
quality improvement.

Scope of analysis. PMD scans the entire code by examining each file for violations of predefined rulesets to detect
issues related to coding standards, and code smells. ChatGPT’s analysis is restricted by the user’s prompts. It may
not have visibility into the entire code and may only limited in addressing issues that are explicitly mentioned in the
prompts.

Semantic understanding. PMD detects issues based on its understanding of programming language syntax and
semantics. It has a limited ability to identify quality issues that require contextual knowledge and retain expertise.
However, ChatGPT is limited to the textual prompts provided by the users. ChatGPT understanding of code semantics
maybe less accurate compared to PMD.

False positives and false negatives. Disagreement cases between PMD and ChatGPT may arise due to the
differences in the detection thresholds. Some issues detected by PMD may be considered to be false positives if these are
not applicable in the given context. Conversely, ChatGPT may be unsuccessful in detecting quality issues that require
semantic analysis or domain-specific knowledge, which might lead to false negatives.

Context sensivitity. While PMD’s analysis may consider factors such as code complexity and patterns to determine
the severity of the issues, ChatGPT’s responses may lack context sensitivity. This is due to the fact that the responses
are based on the provided prompts with a limited understanding of the broader codebase.

Human validation. Disagrement cases between PMD and ChatGPT highlight the importance of human validation,
intervention, and assessment. Students need to review and validate the suggestions provided by both tools to confirm
their accuracy in the given context.

The observation from this RQ can provide insights into the complementary nature of LLMs and static analysis tools.
PMD is capable of identifying common coding issues based on predefined rules. On the other hand, ChatGPT leverages
natural language understanding and machine learning to analyze the code, which could potentially capture issues that
might not be detected by PMD’s rule-based approach. This finding can have implications for software development
practices, as it can provide students with more comprehensive insights into code quality. Furthermore, it is worth
noting that ChatGPT has limitations that it can effectively identify, especially the limited understanding of the overall
codebase and its restricted input size. For example, for the UnusedMethods rule flagged by ChatGPT, the accuracy of

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education25

Table 7. ChatGPT rules that were suggested to students that were not captured by PMD.

Rule

UnusedImports

UnusedParameters

UnusedMethod

UnusedVariable

UnnecessaryModifier

AddOverrideAnnotation

AddJavadoc

NullAssignment

ExplicitlySetDefaultValues

UseDescriptiveVariableNames

MakeFieldsPrivate

ReduceCouplingBetweenPackages

UseDependencyInjectionInsteadOfStaticMethodCalls

AddBraces

RemoveUnnecessaryComments

UseConsistentIndentation

AddProperSpacingAroundOperatorsAndAfterKeywords

SimplifyVariableDeclaration

AddComments

SimplifyVariableDeclaration

UseCurlyBracesForIfElseStatements

this detection can vary based on the size and complexity of the codebase. In large codebases where ChatGPT’s input size
may be insufficient to capture the entire context, its ability to accurately identify UnusedMethods could be compromised.
Therefore, students need to verify the validity of ChatGPT’s output before taking action based on its recommendations.

Manuscript submitted to ACM

26 Eman Abdullah AlOmar

Table 8. PMD rules that were flagged by ChatGPT as false positives.

Rule

LawOfDemeter

PrematureDeclaration

LongVariable

AvoidThrowingRawExceptionTypes

LiteralsFirstInComparisons

CommentSize

UselessParentheses

BooleanGetMethodName

ShortVariable

AbstractNaming

NullAssignment

AvoidInstantiatingObjectsInLoops

Summary for RQ5: Out of the 1,658 analyzed issues, 93% of students reported that ChatGPT did not uncover any

additional issues beyond those detected by PMD.

4.6 What are the response patterns of ChatGPT to student requests?

As illustrated by Figure 10, we analyze the response patterns of ChatGPT to student requests in an educational context.
ChatGPT’s apologies (i.e., acknowledging errors) and affirmations (i.e., maintaining assurance or agreement) play a
role in the debugging and bug fixing process. Apologies can be issued if the process introduces errors or unexpected
outcomes. Affirmations can be used to acknowledge successful resolution. Upon analyzing ChatGPT’s responses, we
cluster the responses into five categories. Next, we provide an analysis of these categories.

Apology. ChatGPT’s responses utilize the following keywords ‘My apologies’ and ‘I apologize’ when acknowledging
errors about its recommendation. These expressions of apology indicate recognition of errors and a commitment to
addressing them. ChatGPT conveys a sentiment of regret when introducing bugs in the code, misunderstanding the
content of the code, missing update functionality, and introducing bad practices. ChatGPT response exemplifies this
category, as shown in Figure 10. It is evident that ChatGPT apologizes for the inability to fix lengthy and complex code.
This demonstrates ChatGPT’s awareness of the importance of maintaining code quality.

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education27

Affirmation. ChatGPT’s responses utilize the following keywords ‘certainly’, ‘absolutely’, ‘of course’ as confirmation
of the student’s prompt about the fixes. These affirmations signify a strong level of agreement or assurance in response
to the student’s inquiry or suggestion. ChatGPT maintains the same level of confidence or agreement throughout
its recommendations. When suggesting fixes, ChatGPT applies refactoring to improve quality, provides examples of
how to fix the code, complies with established guidelines or principles for refactoring, applies best coding practices,
such as modularization and abstraction, to enhance code maintainability and readability, and presents supplementary
approaches to refactoring, providing developers with alternative strategies or techniques to consider. Figure 10 presents
an example of the ChatGPT responses that exemplify this category. As shown, ChatGPT adheres to the best practice of
improving the code style.

Compilation errors. ChatGPT’s responses contain syntactical errors, which can lead to confusion, misinterpretation,
difficulty in comprehending, or inaccuracies. This is apparent from Figure 10 that compilation errors were introduced
after the fixes suggested by ChatGPT.

Provision of guidelines. ChatGPT may offer guidelines, tips, and instructions to help students address the PMD
issue. This pattern involves providing step-by-step instructions to assist students in effectively navigating their problems.
This is demonstrated in Figure 10, when ChatGPT provides instructions on how to reduce coupling between objects.

Disagreement cases. In some instances, ChatGPT’s response may contradict the violation rules flagged by PMD.
This pattern showcases potential discrepancies between ChatGPT’s generated content and PMD, prompting students to
further investigate the underlying causes and potential bug resolution. As depicted by Figure 10, the disagreement
instance between ChatGPT and PMD, as ChatGPT indicates there is no code violation in the student’s request.

Summary for RQ6: The response patterns of ChatGPT to student requests in an educational context, included a

variety of interactions such as affirmations, apologies, compilation errors, provision of guidelines, and instances

where ChatGPT’s feedback differed from that of PMD, offering valuable insights into how LLMs can assist in the

learning process.

5 REFLECTION

This section provides the lessons learned from both the educator’s and the student’s perspectives.
Lesson #1: Develop complementary assignments. ChatGPT identified the PMD violations and attempted to correct
them. In certain instances, the issue disappeared entirely from the PMD analyzer’s detection. However, in other cases,
despite applying a correction, the PMD analyzer continued to flag the issue. ChatGPT revises the code upon request
and sometimes enhances its output. However, with repeated prompts, it typically produce the same response, with
changes occurring only after numerous attempts. Consequently, students can use ChatGPT as a complementary tool in
conjunction with standard static analysis tools to enhance the efficiency of their software development workflow.

Actionable Result. Design assignments that require students to apply LLMs alongside static analysis tools. This
helps encourage students to tackle real-world coding problems while considering multiple resources.

Recommendation. Develop complementary assignments in which LLMs suggestions are used for problem-solving,
and require students to improve them using static analysis tools. This can promote critical thinking and problem solving.
Lesson #2: Limited understanding of the broader context of the codebase. While ChatGPT was informative
about giving context and definitions of errors and could provide specific recommendations for PMD violations, it has

Manuscript submitted to ACM

28 Eman Abdullah AlOmar

Apology pattern:

I apologize, but I cannot modify the code as I don’t have access to the entire codebase or
know what the code is supposed to do.

Affirmation pattern:

Certainly! To avoid the naming conflict, you can rename the field or the method. Here, I’ll
rename the field for clarity:
“‘ Modified code ”’
Now, the field is named ‘fixed’, and the getter and setter methods are using the standard naming
convention without any conflict.

Compilation errors:

You are correct, my apologies for the confusion. ‘env’ is indeed a field of type ‘Annotation-
ProcessorEnvironment’ and not of ‘Messager’. To fix the “Law of Demeter” violation in this case,
you can use the Law of Demeter principle to reduce the coupling.

Provision of guideline:

To address the PMD error of “Possible God Class (WMC=118, ATFD=32, TCC=6.085%)”, you
can consider refactoring the code by breaking down the BaseFunction class into smaller and more
focused classes. This can be done by identifying the functionality that is specific to the class and
separating it into smaller, more manageable classes.

Here are some steps you can follow to refactor the BaeFunction class:
1. Identify the methods and properties of the BaseFunction class that are tightly related to its
core functionality. 2. Separate there methods and properties into a new class that has a specific
responsibility.
3. Update the BaseFunction class to use the new class as a dependency, rather than implementing
the functionality itself.
4. Repeat steps 1-3 until the BaseFunction class is reduced to a smaller and more focused class.

By refactoring the code in this way, you can reduce the complexity of the BaseFunction
class and make it easier to maintain and extend over time.

Disagreement cases pattern:

Since there is no violation of the Law of Demeter in the code you provided, there is no
need to fix it.

Fig. 10. Example of patterns in ChatGPT response.

Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education29

a limited understanding of the broader context and the entire codebase, which could lead to missing dependencies
and codependencies. This limitation can cause instances where ChatGPT offers advice based on misunderstandings
or incorrect assumptions about the code. The study’s assignment reveals this limitation in a practical manner, aiding
students in comprehending how the model operates, rather than viewing it as a black box that autogenerates acceptable
answers for any given query. During this experiment, not only could students not reach an acceptable answer for some
queries, they also experienced how suggested code changes can be even problematic, as seen in Figure 7. Students
experienced various negative side-effects of the autogenerated code. For instance, in certain scenarios, code provided by
ChatGPT triggered compiler errors. Additionally, some students reported that the suggested refactoring did push some
tests to fail, despite the fact that refactoring is supposed to preserve the system’s internal behavior. Moreover, ChatGPT
proposed a solution for the ‘Best Practices’ category; however, the solution increased the cyclomatic complexity of
the method, likely due to insufficient context and lack of clarity in the code snippets. This finding is consistent with
a previous study [13] that discovered that poor warning messages and the absence of suggested fixes are frequent
complaints among industry software developers utilizing program analyzers.

Actionable Result. Encourage students to explore the context of a codebase through deeper exploration before
addressing code problems.

Recommendation. Introduce group activities that ask students to understand the system structure before fixing
bugs or modifying code. This strategy promotes contextual understanding in coding.
Lesson #3: Verify ChatGPT’s responses with human expertise. Although ChatGPT can assist with some debugging
tasks, it should not be the sole tool used for debugging. ChatGPT is perfect as a code companion, but not a replacement.
This is because ChatGPT lacks the ability to interpret the context of code applications. Therefore, including a human
who comprehends the applications is more advantageous. Consequently, skilled developers and specific debugging
tools are still crucial for comprehensive and efficient debugging.

Actionable Result. Foster group work where students collaborate to evaluate the suggestions provided by LLMs,
and compare them with expert insights.

Recommendation. Create peer review activities where ChatGPT-generated solutions are verified and discussed
with instructors or experienced developers to advocate for teamwork and reflective learning.
Lesson #4: Automate the debugging and bug fixing process. ChatGPT is an effective tool for programmers seeking
help. However, providing clear and detailed questions is essential to get the most accurate and helpful responses. It has
helped students debug and clarify what each code segment did and explained how it performed each bug fix. Thus, the
process is significantly shortened. Yet, in a few cases, it required some experimentation before coming up with a set
of questions to accomplish the task. Additionally, it suggested changes that caused compiler errors, e.g., renaming a
variable in a field declaration or fixing a different issue in the code instead of the one given to analyze. Furthermore,
ChatGPT tends to view PMD-related stylistic or best practice issues as not problematic and is too light-handed in
explaining the potential issues with stylistic/best practice problems in the source code. For example, it may overlook
issues like inconsistent indentation, unclear variable names, or improper use of comments. In practice, this can lead to
the student developing bad coding habits such as neglecting code readability and failing to follow established coding
conventions, which ultimately reduce the productivity of the individual and the team to which they belong. In addition,
some of the flaws were observed with inexplicable fixes or suggestions that can further contribute to confusion and
poor coding practices.

Actionable Result. Implement hands-on class activities that require students to integrate automated static analysis
tools into the development workflow.

Manuscript submitted to ACM

30 Eman Abdullah AlOmar

Recommendation.Assign class projects where students use automated tools for debugging, reflect on the experience,
and then integrate ChatGPT to assist in these projects to improve troubleshooting skills.
Lesson #5: Improve ChatGPT’s accuracy and effectiveness.ChatGPT proved helpful in addressing certain violations
of PMD rules and offered good recommendations for resolutions. Nevertheless, in some instances, it is challenging
to definitively identify PMD rule violations, even with the provided code context. For certain violations, it responded
with ‘may’, suggesting that it met specific conditions considering only the given code snippet, not the surrounding
code. We believe that with targeted training for the specific ruleset, ChatGPT could efficiently help reduce PMD rule
violations. However, solely depending on ChatGPT is not advisable; developers need to possess a degree of knowledge
and comprehension to make the right corrections, as it sometimes results in code that leads to compilation errors.

Actionable Result. Allow students to engage in iterative experimentation with ChatGPT’s outputs and assess its
performance independently.

Recommendation. Encourage students to develop their own methods to verify and refine ChatGPT-generated code
and to set their own goals to improve accuracy and effectiveness.
Lesson #6: Handle complex code and errors. The effectiveness of ChatGPT is closely related to the quality of its
training data set. Based on feedback from students, ChatGPT offers valuable, high-level advice on bugs. For example, it
excels at addressing less urgent issues such as code styling, inserting comments, and enhancing the logic of if statements.
However, there are instances where it misinterprets the error the student intended to highlight or becomes confused
because the input consisted of a code snippet instead of the entire code, which was too lengthy to include. Its suggestions
occasionally misinterpret the purpose of a section and subtly change the logic. Therefore, the more complex the given
code input, the more likely the code output will not work properly.

Actionable Result. Create hands-on activities in which students work with complex code, making adjustments
based on the ChatGPT recommendation.

Recommendation. Develop lab sessions where students handle complex code issues, leveraging both ChatGPT’s
insights and their manual debugging skills. Students should reflect on what went right/wrong to reinforce learning.
Lesson #7: Examine ChatGPT’s tone impact on bug resolution decisions. The manner in which ChatGPT
expresses confidence or offers apologies could potentially influence students’ decisions about bug resolution. Future
research can explore whether the affirmation or apologetic tone of ChatGPT’s responses correlates with students’
acceptance of its recommendations. Specifically, understanding how students perceive and respond to ChatGPT’s
confident assertions or apologies about the recommendation could shed light on the effectiveness and trustworthiness
of the model’s suggestions. For example, does a confident assertion from ChatGPT lead students to more readily accept
its recommendations, even if they introduce potential issues? In contrast, do ChatGPT apologies mitigate concerns
about such issues and encourage students to overlook potential flaws in its suggestions?

Actionable Result. Engage students in group discussions about the tone of ChatGPT’s responses and its effect on
their decision-making processes.

Recommendation. Facilitate discussions where students evaluate ChatGPT’s conversation style influences their
interpretation and understanding of the solutions. This interactive activity can reveal the psychological and decision-
making aspects of human-AI interaction.
Lesson #8: Explore alternative approaches to utilizing ChatGPT for programming assistance. Upon reviewing
a variety of prompts written by students to tackle PMD issues, it became evident that some students requested ChatGPT
to function as a distinct AI assistant dedicated to supporting programmers during development. Although we have not
evaluated the effects of this approach, we suspect that instructing ChatGPT to “act as” a separate AI for programming
Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education31

assistance will probably result in more direct code responses. This strategy could potentially offer an alternative for
students who are dissatisfied with ChatGPT’s performance when approached in a straightforward manner.

Actionable Result. Motivate students to try various prompting techniques by asking ChatGPT to impersonate a
dedicated AI assistant for programming. This approach may enable students to receive more customized and effective
coding guidance.

Recommendation. Develop a guide that showcases various strategies for framing prompts, such as directing
ChatGPT to function as an AI specifically for programming tasks. This resource could aid students in crafting successful
prompts.

6 THREATS TO VALIDITY

In this section, we describe potential threats to the validity of our research method and the actions we took to mitigate
them.

External Validity. Regarding the generalizability and applicability of our findings, our investigation includes 155
submissions. While we gathered valuable insights and conducted a precise analysis, the findings might not accurately
reflect the broader student population utilizing static analysis tools and ChatGPT to resolve issues. Furthermore, our
analysis focused on mature open-source Java projects with varying sizes, contributors, and commit counts. However,
we cannot claim that our findings can be generalized to projects written in other programming languages or from
different ecosystems. More research on additional projects is required to address this limitation. Given that ChatGPT’s
training involves a large corpus of source code, sourced from platforms like GitHub and StackOverflow, there is a
possibility of data leakage, i.e., the proposed fixes were previously seen in the training set, so the fixes were previously
memorized. However, the projects used actually contain some of these warnings in their current versions, which means
that ChatGPT may have experienced these fixes in other projects, and its current decisions are based on inference.
In addition, the performance of ChatGPT was not uniform across categories and underperformed for design-level
issues. Finally, our study is solely focused on ChatGPT, and it is recommended that future research extend to other
general-purpose chatbots applicable to software development, such as the recently released Google Bard [7, 48], which
may have limitations that ChatGPT does not possess, including access to up-to-date content. Also, we recommend that
students use the free version of ChatGPT (currently 3.5), but we did not control who uses the premium service, which
features GPT-4 and GPT4o.

Internal and Construct Validity. To assess our interpretation of open-ended comments regarding the tool’s use,
we did not extensively discuss every comment, as many are open to multiple readings and additional interviews are
required for clarification. To avoid personal bias during manual analysis, two annotators independently reviewed each
stage until agreement was reached. Our selection of PMD as a static analysis tool could result in bias because the
identification of poor programming practices and code smells is inherently subjective [1, 5, 11, 16, 19, 32]. In addition,
students may have had a different experience if another tool was selected in this assignment. We opted for PMD as it is
one of the popular state-of-the-art tools, but we intend to explore other static analysis tools in the future to determine
whether they achieve similar levels of satisfaction. Moreover, any training provided to students could introduce bias. To
address this, the PMD and ChatGPT trainings were conducted independently. During ChatGPT training, students
were exposed to prompts related to software quality concepts they could relate to, though none were directly aimed
at addressing PMD-raised issues. Another threat relates to the lack of specific performance metrics for ChatGPT in
different coding categories. In our study, we encourage students to think critically about the evaluation process, rather
than relying solely on metrics as a black-box indicator. However, the absence of comparison metrics may hinder

Manuscript submitted to ACM

32 Eman Abdullah AlOmar

the ability to comprehensively assess the effectiveness of ChatGPT. Future work should aim to include measurable
performance indicators and a more critical approach to provide a more robust evaluation of its capabilities in various
coding contexts.

7 CONCLUSION

Understanding the practice of reviewing code to improve quality is of paramount importance for education. Although
modern code review is widely adopted in open-source and industry projects, the relationship between using LLMs
such as ChatGPT and the way students perceive it during code analysis remains unexplored. Our main contribution
underscores how the integration of PMD with ChatGPT can engage students to improve the quality of the software. This
synergy enhances automated static code analysis and AI-powered code understanding, offering a more comprehensive
approach to code quality and improvement. Using the strengths of both tools, our work demonstrates how AI can
enhance traditional software development practices, leading to efficient and effective outcomes. In this study, we
conducted a quantitative and qualitative study to explore the effectiveness of PMD and GPT in familiarizing students
with improving the quality of the source code by i) detecting code issues and antipatterns and ii) implementing fixes for
their correction. The paper develops a culture of reviewing and patching unknown code. Our results reveal several
types of static analysis tools that students should pay more attention to during code review; reviewing design-related
changes takes longer to complete compared to other changes; students rated some aspects of ChatGPT positively
while also providing valuable ideas for future model improvement; engineering prompts with clarity, complexity, and
context foster learning outcomes; 93% of analyzed issues shows that ChatGPT did not highlight any additional issues
beyond those detected by PMD; and the interaction between students and ChatGPT includes several patterns such as
affirmation, apologies, and compilation errors.

8 FUTURE WORK

We foresee many promising avenues for future work. For example, we plan to explore the impact of LLM tone on
user experience by conducting controlled experiments to explore how ChatGPT tone affects user comprehension and
engagement. By varying the tone in different coding scenarios, researchers could measure the impact on students’
learning outcomes, confidence in code correctness, and problem-solving efficiency. We will use surveys and performance
metrics to gather empirical evidence, making the studymore rigorous. Furthermore, to address the issues with ChatGPT’s
handling of complex code or errors, future studies could design benchmark datasets that involve difficult coding
problems, including those with security vulnerabilities, edge cases, and performance inefficiencies. Researchers could
systematically analyze ChatGPT performance in these cases, documenting specific types of errors (e.g., incomplete
solutions) and providing metrics such as error rates, code robustness, and time-to-resolution compared to human
programmers. Furthermore, future research could involve a comparative study to evaluate the performance of ChatGPT
in various coding categories, such as object-oriented programming, functional programming, and security-sensitive code.
Measurement of specific metrics, such as code correctness, time to completion, and frequency of security vulnerabilities,
can provide a more quantitative assessment of the strengths and weaknesses of ChatGPT in different contexts. In
addition, we plan to use other static analysis tools to complement and validate our current study. This will provide the
software engineering community with a more comprehensive view of using static analysis tools to engage students
with software quality improvement from the educator and student perspectives. Additionally, we plan to conduct
a long-term study to track students using ChatGPT over multiple semesters, comparing their learning outcomes
(e.g., grades, code quality, and problem-solving abilities) with those of students not using ChatGPT. By incorporating
Manuscript submitted to ACM

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education33

Table 9. The summary of survey questions.

Question ID SurveyQuestion ResearchQuestion (RQ)

I. Background
Question 1 How many years of general programming experience do you have?
Question 2 How many years of Java programming experience do you have?
Question 3 What is your academic program?
Question 4 Please select the years of software engineering industry experience that you have.
Question 5 What is your academic major?
Question 6 How often have you generally fixed bugs?

II. PMD
Question 7 Which project do you select? RQ1

Question 8 What PMD-related category have you chosen? RQ1 & RQ2

Question 9 What PMD rule have you chosen? Please write the exact PMD rule name as listed in PMD documentation? RQ1 & RQ5

III. ChatGPT
Question 10 Did you try ChatGPT to fix the buggy code? RQ3

Question 11 How did you use ChatGPT to fix buggy code? RQ3

Question 12 If you selected ’Other’ in the previous question, please specify how did you use ChatGPT to fix the buggy code. RQ3

Question 13 Write the exact ChatGPT prompt you have decided to use. RQ4

Question 14 Was ChatGPT able to fix the buggy code? RQ3

Question 15 Did the fix contain any other bugs/errors detected by PMD? RQ3 & RQ5

Question 16 Did one of the proposed fixes generate compiler errors? RQ3 & RQ6

Question 17 Did ChatGPT detect any other bugs/errors that were not detected by PMD? If yes, copy-paste the ChatGPT message. RQ5

Question 18 How many times have you interacted with ChatGPT before finding (or not) a fix to the buggy code? RQ3

Question 19 How long it took you to find (or not) a fix using ChatGPT? Please specify the approximate time in minutes. RQ2

Question 20 Upload a screenshot of the fixed source code generated by ChatGPT. RQ6

VI. Final thoughts
Question 21 Was ChatGPT helpful/useful in fixing the errors? RQ3

Question 22 Add a concise comment about your experience with ChatGPT. RQ3 & RQ6

assessments at different intervals, the study would provide empirical data on the tool’s long-term impact on student
learning, highlighting both benefits and potential drawbacks precisely. Finally, we plan to incorporate both quantitative
metrics and a critical analysis to provide a more comprehensive evaluation of the effectiveness of ChatGPT.

9 ACKNOWLEDGMENTS

Declaration of generative AI and AI-assisted technologies in the writing process. During the preparation of this
work, the author used the ChatGPT web interface and the Overleaf Wrietfull tool to improve the language, paraphrased
descriptions, and readability of the manuscript. After using these tools, the author reviewed and edited the content as
needed and takes full responsibility for the content of the publication.

10 APPENDIX

The survey questions are enumerated in Table 9.

REFERENCES
[1] Eman Abdullah AlOmar, Salma Abdullah AlOmar, and Mohamed Wiem Mkaouer. 2023. On the use of static analysis to engage students with

software quality improvement: An experience with pmd. (2023).
[2] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane Kessentini. 2021. Refactoring practices in the

context of modern code review: An industrial case study at Xerox. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 348–357.

[3] Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem Mkaouer, and Ali Ouni. 2022. Code Review Practices for Refactoring Changes: An
Empirical Study on OpenStack. In Proceedings of the 19th International Conference on Mining Software Repositories. 1–13.

[4] Eman Abdullah AlOmar and Mohamed Wiem Mkaouer. 2024. Cultivating Software Quality Improvement in the Classroom: An Experience with
ChatGPT. In 2024 36th International Conference on Software Engineering Education and Training (CSEE&T). IEEE, 1–10.

Manuscript submitted to ACM

34 Eman Abdullah AlOmar

[5] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni, and Alessandro Marino. 2016. Comparing and experimenting machine learning
techniques for code smell detection. Empirical Software Engineering 21, 3 (2016), 1143–1191.

[6] Owen Astrachan, Garrett Mitchener, Geoffrey Berry, and Landon Cox. 1998. Design Patterns: An Essential Component of CS Curricula. In Proceedings
of the Twenty-Ninth SIGCSE Technical Symposium on Computer Science Education (Atlanta, Georgia, USA) (SIGCSE ’98). Association for Computing
Machinery, New York, NY, USA, 153–160. https://doi.org/10.1145/273133.273182

[7] Try Bard. 2023. an AI experiment by Google.
[8] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and Fabio Palomba. 2015. An experimental investigation on the innate

relationship between quality and refactoring. Journal of Systems and Software 107 (2015), 1–14.
[9] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave Binkley. 2015. Are test smells really harmful? an empirical study.

Empirical Software Engineering 20, 4 (2015), 1052–1094.
[10] Som Biswas. 2023. Role of ChatGPT in Computer Programming.: ChatGPT in Computer Programming. Mesopotamian Journal of Computer Science

2023 (2023), 8–16.
[11] Sérgio Bryton, Fernando Brito e Abreu, and Miguel Monteiro. 2010. Reducing subjectivity in code smells detection: Experimenting with the long

method. In 2010 Seventh International Conference on the Quality of Information and Communications Technology. IEEE, 337–342.
[12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, et al. 2021. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).
[13] Maria Christakis and Christian Bird. 2016. What developers want and need from program analysis: an empirical study. In Proceedings of the 31st

IEEE/ACM international conference on automated software engineering. 332–343.
[14] Henrik Bærbak Christensen. 2004. Frameworks: Putting design patterns into perspective. In Proceedings of the 9th annual SIGCSE conference on

Innovation and technology in computer science education. 142–145.
[15] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In 2011 international symposium on

empirical software engineering and measurement. IEEE, 275–284.
[16] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and Andrea De Lucia. 2018. Detecting code smells using machine

learning techniques: are we there yet?. In 2018 ieee 25th international conference on software analysis, evolution and reengineering (saner). IEEE,
612–621.

[17] Barbara J Duch, Susan E Groh, and Deborah E Allen. 2001. The power of problem-based learning: a practical” how to” for teaching undergraduate
courses in any discipline. Stylus Publishing, LLC.

[18] Li Fei-Fei, Robert Fergus, and Pietro Perona. 2006. One-shot learning of object categories. IEEE transactions on pattern analysis and machine
intelligence 28, 4 (2006), 594–611.

[19] Francesca Arcelli Fontana, Pietro Braione, and Marco Zanoni. 2012. Automatic detection of bad smells in code: An experimental assessment. J.
Object Technol. 11, 2 (2012), 5–1.

[20] Robert M French. 1999. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences 3, 4 (1999), 128–135.
[21] Md Asraful Haque and Shuai Li. 2023. The Potential Use of ChatGPT for Debugging and Bug Fixing. EAI Endorsed Transactions on AI and Robotics 2,

1 (2023), e4–e4.
[22] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. 2019. How do developers act on static analysis alerts? an empirical study of coverity usage. In

2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE). IEEE, 323–333.
[23] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An exploratory study of the impact of code smells on software change-

proneness. In 2009 16th Working Conference on Reverse Engineering. IEEE, 75–84.
[24] Raphaël Khoury, Anderson R Avila, Jacob Brunelle, and Baba Mamadou Camara. 2023. How secure is code generated by chatgpt?. In 2023 IEEE

International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2445–2451.
[25] Barbara A Kitchenham and Shari L Pfleeger. 2008. Personal opinion surveys. In Guide to advanced empirical software engineering. Springer, 63–92.
[26] Guilherme Lacerda, Fabio Petrillo, Marcelo Pimenta, and Yann Gaël Guéhéneuc. 2020. Code smells and refactoring: A tertiary systematic review of

challenges and observations. Journal of Systems and Software 167 (2020), 110610.
[27] Valentina Lenarduzzi, Fabiano Pecorelli, Nyyti Saarimaki, Savanna Lujan, and Fabio Palomba. 2023. A critical comparison on six static analysis tools:

Detection, agreement, and precision. Journal of Systems and Software 198 (2023), 111575.
[28] Chen Li, Emily Chan, Paul Denny, Andrew Luxton-Reilly, and Ewan Tempero. 2019. Towards a framework for teaching debugging. In Proceedings of

the Twenty-First Australasian Computing Education Conference. 79–86.
[29] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your code generated by chatgpt really correct? rigorous evaluation of

large language models for code generation. Advances in Neural Information Processing Systems 36 (2024).
[30] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Shin Yoo, and Yves Le Traon. 2018. Mining fix patterns for findbugs violations. IEEE Transactions on

Software Engineering 47, 1 (2018), 165–188.
[31] Wei Ma, Shangqing Liu, Wenhan Wang, Qiang Hu, Ye Liu, Cen Zhang, Liming Nie, and Yang Liu. 2023. The Scope of ChatGPT in Software

Engineering: A Thorough Investigation. arXiv preprint arXiv:2305.12138 (2023).
[32] Mika V Mäntylä and Casper Lassenius. 2006. Subjective evaluation of software evolvability using code smells: An empirical study. Empirical

Software Engineering 11, 3 (2006), 395–431.

Manuscript submitted to ACM

https://doi.org/10.1145/273133.273182

Nurturing Code Quality: Leveraging Static Analysis and Large Language Models for Software Quality in Education35

[33] Susan A Mengel and Vinay Yerramilli. 1999. A case study of the static analysis of the quality of novice student programs. In The proceedings of the
thirtieth SIGCSE technical symposium on Computer science education. 78–82.

[34] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio Sant’Anna. 2017. On the evaluation of code smells and detection tools. Journal
of Software Engineering Research and Development 5, 1 (2017), 1–28.

[35] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the
impact on maintainability of code smells: a large scale empirical investigation. Empirical Software Engineering 23, 3 (2018), 1188–1221.

[36] Sebastiano Panichella, Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2015. Would static analysis tools help developers with
code reviews?. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER). IEEE, 161–170.

[37] R Plosch, Harald Gruber, A Hentschel, Gustav Pomberger, and Stefan Schiffer. 2008. On the relation between external software quality and static
code analysis. In 2008 32nd Annual IEEE Software Engineering Workshop. IEEE, 169–174.

[38] Md Mostafizer Rahman and Yutaka Watanobe. 2023. ChatGPT for education and research: Opportunities, threats, and strategies. Applied Sciences 13,
9 (2023), 5783.

[39] Simone Romano, Fiorella Zampetti, Maria Teresa Baldassarre, Massimiliano Di Penta, and Giuseppe Scanniello. 2022. Do Static Analysis Tools Affect
Software Quality when Using Test-driven Development?. In ACM/IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM). 80–91.

[40] Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H Paterson. 2010. An introduction to program comprehension for
computer science educators. Proceedings of the 2010 ITiCSE working group reports (2010), 65–86.

[41] Mohammed Latif Siddiq, Joanna Santos, Ridwanul Hasan Tanvir, Noshin Ulfat, Fahmid Al Rifat, and Vinicius Carvalho Lopes. 2023. Exploring the
Effectiveness of Large Language Models in Generating Unit Tests. arXiv preprint arXiv:2305.00418 (2023).

[42] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We Refactor? Confessions of GitHub Contributors. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA,
858–870. https://doi.org/10.1145/2950290.2950305

[43] Devarshi Singh, Varun Ramachandra Sekar, Kathryn T Stolee, and Brittany Johnson. 2017. Evaluating how static analysis tools can reduce code
review effort. In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, 101–105.

[44] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An analysis of the automatic bug fixing performance of chatgpt. In 2023
IEEE/ACM International Workshop on Automated Program Repair (APR). IEEE, 23–30.

[45] Weisong Sun, Chunrong Fang, Yudu You, Yun Miao, Yi Liu, Yuekang Li, Gelei Deng, Shenghan Huang, Yuchen Chen, Quanjun Zhang, et al. 2023.
Automatic Code Summarization via ChatGPT: How Far Are We? arXiv preprint arXiv:2305.12865 (2023).

[46] Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques Klein, and Tegawendé F Bissyandé. 2023. Is ChatGPT the Ultimate
Programming Assistant–How far is it? arXiv preprint arXiv:2304.11938 (2023).

[47] Alexander Trautsch, Steffen Herbold, and Jens Grabowski. 2020. A longitudinal study of static analysis warning evolution and the effects of PMD on
software quality in apache open source projects. Empirical Software Engineering 25, 6 (2020), 5137–5192.

[48] Rosalia Tufano, Antonio Mastropaolo, Federica Pepe, Ozren Dabic, Massimiliano Di Penta, and Gabriele Bavota. 2024. Unveiling ChatGPT’s Usage
in Open Source Projects: A Mining-based Study. In Proceedings of the 21st International Conference on Mining Software Repositories. 571–583.

[49] Rini Van Solingen, Vic Basili, Gianluigi Caldiera, and H Dieter Rombach. 2002. Goal question metric (gqm) approach. Encyclopedia of software
engineering (2002).

[50] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing from a few examples: A survey on few-shot learning. ACM
computing surveys (csur) 53, 3 (2020), 1–34.

[51] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt.
2023. A prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint arXiv:2302.11382 (2023).

[52] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt. 2024. Chatgpt prompt patterns for improving code quality,
refactoring, requirements elicitation, and software design. (2024), 71–108.

[53] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Going: Fixing 162 out of 337 bugs for 0.42 each using ChatGPT. arXiv
preprint arXiv:2304.00385 (2023).

[54] Yongqin Xian, Bernt Schiele, and Zeynep Akata. 2017. Zero-shot learning-the good, the bad and the ugly. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 4582–4591.

[55] Chenyang Yang, Rachel A Brower-Sinning, Grace Lewis, and Christian Kästner. 2022. Data leakage in notebooks: Static detection and better
processes. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering. 1–12.

[56] Xueqi Yang, Zhe Yu, Junjie Wang, and Tim Menzies. 2021. Understanding static code warnings: An incremental AI approach. Expert Systems with
Applications 167 (2021), 114134.

[57] Rahul Yedida, Hong Jin Kang, Huy Tu, Xueqi Yang, David Lo, and Tim Menzies. 2023. How to find actionable static analysis warnings: A case study
with FindBugs. IEEE Transactions on Software Engineering (2023).

Manuscript submitted to ACM

https://doi.org/10.1145/2950290.2950305

	Abstract
	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Goal & Research Questions
	3.2 Course Overview
	3.3 PMD
	3.4 Teaching Context and Participants
	3.5 Assignment Content and Format
	3.6 ChatGPT Usage
	3.7 Data Analysis

	4 Results
	4.1 What PMD-related problems are typically selected by students?
	4.2 What type of issues typically takes longer to be fixed?
	4.3 To what extent was ChatGPT successful in addressing the students' debugging needs?
	4.4 What strategies students use to formulate prompts that facilitate effective communication with ChatGPT?
	4.5 Does ChatGPT detect any other quality issues that were not detected by PMD?
	4.6 What are the response patterns of ChatGPT to student requests?

	5 Reflection
	6 Threats to Validity
	7 Conclusion
	8 Future Work
	9 Acknowledgments
	10 Appendix
	References

