
Automating Source Code Refactoring in the Classroom
Eman Abdullah AlOmar

Stevens Institute of Technology

Hoboken, United States

ealomar@stevens.edu

Mohamed Wiem Mkaouer

Rochester Institute of Technology

Rochester, United States

mwmvse@rit.edu

Ali Ouni

ETS Montreal, University of Quebec

Montreal, Quebec, Canada

ali.ouni@etsmtl.ca

ABSTRACT
Refactoring is the practice of improving software quality without

altering its external behavior. Developers intuitively refactor their

code for multiple purposes, such as improving program comprehen-

sion, reducing code complexity, dealing with technical debt, and

removing code smells. However, no prior studies have exposed the

students to an experience of the process of antipatterns detection
and refactoring correction, and provided students with toolset to

practice it. To understand and increase the awareness of refactor-

ing concepts, in this paper, we aim to reflect on our experience

with teaching refactoring and how it helps students become more

aware of bad programming practices and the importance of cor-

recting them via refactoring. This paper discusses the results of

an experiment in the classroom that involved carrying out various

refactoring activities for the purpose of removing antipatterns using

JDeodorant, an Eclipse plugin that supports antipatterns detection

and refactoring. The results of the quantitative and qualitative anal-

ysis with 171 students show that students tend to appreciate the

idea of learning refactoring and are satisfied with various aspects

of the JDeodorant plugin’s operation. Through this experiment,

refactoring can turn into a vital part of the computing educational

plan. We envision our findings enabling educators to support stu-

dents with refactoring tools tuned towards safer and trustworthy

refactoring.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Maintaining software.

KEYWORDS
refactoring, antipattern, quality, software engineering, education

ACM Reference Format:
Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2023.

Automating Source Code Refactoring in the Classroom. In Proceedings of
ACM Conference (Conference’17). ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Design antipatterns are symptoms of poor choices at the software

architecture level. These bad programming practices typically vio-

late object-oriented design principles, such as Single Responsibility
and Law of Demeter. The existence of these design antipatterns

often leads to the degradation of software architectures, making

them difficult to understand, reuse, and evolve. It is important to

note that these antipatterns are different from coding errors, and

do not directly lead to compiler or logical faults, but various studies

have demonstrated how the existence of antipatterns makes the

code significantly more prone to errors [11, 27, 28].

Two popular examples of design antipatterns are God Class and
Feature Envy. The first characterizes classes that are abnormally

large and monopolize most of the system’s behavior by controlling

a significant number of other coupled classes. Decomposing this

class is trivial to sustain the modular design of the system. The

second is related to methods that heavily rely on methods and

attributes that are outside of its class more than those inside it. This

is a symptom of a misplaced method that needs to be moved to a

class to make it more cohesive.

To cope with these antipatterns, refactoring has emerged as a

de-facto practice to improve software quality through the removal

of antipatterns [16]. Refactoring is the art of improving source code

internal design, without altering its external behavior [6, 18].

Several studies have proposed methods for teaching code refac-

toring through the identification of duplicate and dead code, and

bad naming conventions [22, 23, 25, 26]. While these techniques

play a role in improving the student’s understanding of refactoring,

it is critical to expose students to deeper design-level antipatterns

that are frequently found even in well-engineered projects [30], and

harder to fix [9]. For instance, early exposure to God Classes and

Feature Envies would help reduce their prevalence in the future.

Therefore, the goal of this paper is to increase awareness of

bad programming practices, i.e., design-level antipatterns, and the

importance of correcting them through the application of appropri-

ate refactoring operations. Hence, we perform a series of assign-

ments where students are asked to reason over how to refactor the

God Class and Feature Envy design antipatterns. We chose these

specific antipatterns on the basis of their frequent refactoring by

developers in various systems
1
.

We report our experience using JDeodorant [35], an integrated

development environment (IDE) plugin, to support students in

finding suitable refactorings. We chose JDeodorant because it is

widely used by researchers as the state-of-the-art benchmark to

assess the precision of refactoring techniques. JDeodorant is also

widely adopted by practitioners to improve their systems’ design.

1
Based on tool usage statistics: https://users.encs.concordia.ca/ nikolaos/."

ar
X

iv
:2

31
1.

10
75

3v
1

 [
cs

.C
Y

]
 5

 N
ov

 2
02

3

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

We adopted the reflective learning strategy when designing the

refactoring assignments [12]. In fact, we follow Ash and Clayton’s

DEALmodel [8] as we aim to let students first construct and describe
an initial refactoring solution before examining other candidate

solutions recommended by JDeodorant, to finally articulate on the

difference between their solution and the ones recommended by the

tool. We executed these assignments in undergraduate and gradu-

ate software engineering courses at two universities
2
. We analyzed

171 student refactoring submissions in terms of two dimensions.

The first dimension is empirical, as we assess the quality of stu-

dents’ refactored code in contrast with JDeodorant’s, to extract any

knowledge gap. This dimension’s outcome reveals how God class
antipattern tends to be harder for students to refactor, compared to

Feature Envy, and how the use of JDeodorant has facilitated the

correction of these hard instances. The second dimension is qualita-

tive, where we survey students to sense their feedback on the tool’s

usefulness, usability, and functionality. The results of the survey

show that the vast majority of students (87% responses) found the

plugin to be useful, and usable, and were satisfied with its operation.

Finally, we reflect on the importance of reinforcing software design

principles and patterns. Therefore, we foresee students’ usage of

JDeodorant as an opportunity to raise awareness of the detection

of antipatterns and their correction measures.

This paper contributes to the broad adoption of refactoring by (i)

designing practical assignments that first challenge students’ abili-

ties to refactor design-level problems, then second provide them

with candidate solutions to reason over and choose based on their

potential impact on quality, and (ii) reporting the experience of us-

ing the JDeodorant plugin. This experiment enabled instructors to

design personalized, hands-on assignments and support students in

learning how to use refactoring features in the IDE. It also achieves

another learning objective, since a recent study has shown that

developers rarely use the built-in IDE features when refactoring

their code, increasing the error proneness of their changes [19]. As

part of this paper’s contributions, we provide the assignment de-

scription, the tool documentation, and statistical tests for educators

to replicate and extend [1].

2 JDEODORANTWORKFLOW
JDeodorant [35] stands as one of the popular refactoring tools

that have been provided as an Eclipse and IntelliJ IDEA plugins. It

automatically detects antipatterns, including Feature Envy, State
Checking, Type Checking, Long Method, God Class, Duplicate
Code, and Refused Bequest, and for each detected antipattern, it

offers its correction by providing a list of candidate refactorings that

developers have to choose from. Developers, are then responsible

for choosing the most adequate refactoring operations according

to their design choices and preferences.

To illustrate the workflow of JDeodorant, we choose to fix the

Feature Envy antipattern that may exist in the Gantt
3
project. We

open the Gantt project using the Eclipse IDE, with JDeodorant al-

ready installed as a plugin. Then, we enable the plugin by clicking on

Bad Smells in the menu bar (Step 1), and then we click on Feature
Envy. To identify all instances of this antipattern, the plugin inter-

nally parses all the project methods to generate their corresponding

2
Hidden for double-blind review.

3
https://github.com/bardsoftware/ganttproject

Figure 1: JDeodorant workflow.

Abstract Syntax Tree (AST) representations, which in turn allows

the tool to determine whether a method matches the pattern of

a Feature Envy antipattern. Once the detection process is done,

all Feature Envy instances are shown in the plugin view (Step 2),

along with their corresponding refactoring suggestions (Step 3).

For example, as can be seen in Figure 1, the createFrame method,

with 55 lines of code, and located in the class CharHeaderImpl, is
flagged as a Feature Envy. The plugin also proposed a couple of

candidate Move Method Refactorings for us to choose from. If we

choose to fix the creatFrame method by selecting the first refac-

toring suggestion, the plugin displays the method being refactored

(Step 4), and internally calls the Move Method built-in feature inside

Eclipse. This feature initiates the refactoring process by opening

a preview window (Step 5). This window shows the original code

of the createFrame method, side by side with a preview of refac-

tored code, which would show the result of moving createFrame
to another class. If we confirm the refactoring, it will automatically

be applied to the source code.

3 EXPERIMENTAL SETUP
3.1 Teaching Context and Participants
The study is performed in courses taught at 2 universities

4
. The

courses cover various concepts related to software analysis and

testing, along with practical tools, widely used in the open-source

community. Students were also given several hands-on assignments

in topics including software quality metrics, code refactoring, bug

management, unit and mutation testing, and technical debt. Be-

fore conducting the experiment, students acquired the necessary

background by learning the following concepts: (1) code quality

(teaching quality and how to measure it), (2) design antipatterns

(teaching violations of design principles, and their detections rules),

and (3) code refactoring (teaching refactoring recipes and opera-

tions). The experiment’s assignments constituted 7.5% of the final

grade. It was due 14 days each after the concepts were taught.

3.2 Assignments Content and Format
We adopt Ash and Clayton’s reflection model by gathering evidence

(refactored code) that can be examined to identify any gaps in the

4
Hidden for double-blind review. Details will be added upon the paper’s acceptance.

Automating Source Code Refactoring in the Classroom Conference’17, July 2017, Washington, DC, USA

state of refactoring practice (inability to correct certain antipat-

terns), with the intent to improve it (provide alternative correction

mediums).

Initially, students are asked to analyze one version of a Java soft-

ware system of their choice approved by the instructor to ensure

its eligibility based on popularity, besides making sure it correctly

compiles since JDeodorant requires it. The rationale behind giv-

ing students the choice of project, is to let them choose one that

they are comfortable with, and fits into their interests. For students

who do not want to search for a project, they are given a list that

the instructor has already curated. We selected these projects [1]

because they contain the antipatterns that we are interested in.

We conduct our experiments through two assignments: In the first

assignment, students are asked to fix the two antipatterns (i.e., God
Class and ii) Feature Envy) and provide a sequence of refactoring
operations that will fix multiple instances of these antipatterns. The

submissions to this assignment constitute the Manual Refactoring.
In the second assignment, students are asked to set up and run

JDeodorant to analyze the chosen project production code. Upon

running JDeodorant, students are required to choose at least 2 an-

tipatterns instances from 2 different antipatterns types supported

by the tool (4 in total), and then analyze JDeodorant recommen-

dations to choose the potential refactoring operations to fix them.

Since JDeodorant gives many recommendations on how to fix the

same antipatterns instance, based on the students’ understanding

of problems’ symptoms, they would need to reason when choosing

the code changes that remove the smells while fitting properly in

the system’s design. The submissions to this assignment constitute

the Assisted Refactoring. In summary, the students followed these

steps:

(1) Manually fix the detected antipatterns types: (i) God Class,
and (ii) Feature Envy.

(2) Provide a sequence of refactoring operations that will fix

multiple instances of those antipatterns (i.e., Manual Refac-
toring).

(3) Justify the choices regarding refactoring decisions for each

fixed antipattern type.

(4) Install the Eclipse plug-in for JDeodorant.

(5) Run JDeodorant on a project of students’ choice and select

2 instances of each of the 2 following antipatterns types: (i)
God Class, and (ii) Feature Envy.

(6) Look at the refactoring recommendations by JDeodorant, and

choose which ones to be executed. Students keep refactoring

until processing all their chosen smell instances.

(7) Report the findings: chosen antipattern instances, chosen

refactoring operations and results (i.e., Assisted Refactoring).
(8) Add to the report a concise comment about the experience

with JDeodorant (Optional).

Students were evaluated based on two aspects, (1) concept under-

standing: assessment of students’ ability to apply the right refactor-

ing to fix antipatterns; (2) program analysis: assessment of whether

students are able to execute refactoring and verify the preserved

behavior. Students were not evaluated on their perception of the

code, to avoid any cognitive bias that may occur under the pressure

of being graded. Also, we anonymized the feedback, and made it op-

tional, to only collect information from students who were serious

about it, which will increase the magnitude of provided experience.

Despite it being not mandatory, the majority of students (96.07%)

chose to complete it.

The assignment was performed over four consecutive semesters.

171 students, primarily from computer science (CS) and software

engineering (SE) majors, were enrolled during these semesters, and

completed assignments.

3.3 Data Analysis
We analyzed the responses to open-ended questions to create a

comprehensive high-level list of themes by adopting a thematic

analysis approach based on guidelines provided by Cruzes et al.
[15]. Thematic analysis is one of the most used methods in Software

Engineering literature [4, 5, 32]. This is a technique for identifying

and recording patterns (or “themes”) within a collection of descrip-

tive labels, which we call “codes”. For each response, we proceeded

with the analysis using the following steps: i) Initial reading of

the survey responses; ii) Generating initial codes (i.e., labels) for
each response; iii) Translating codes into themes, sub-themes, and

higher-order themes; iv) Reviewing the themes to find opportu-

nities for merging; v) Defining and naming the final themes, and

creating a model of higher-order themes and their underlying evi-

dence. The above-mentioned steps were performed independently

by two authors. One author performed the labeling of students’

comments independently from the other author who was responsi-

ble for reviewing the currently drafted themes. By the end of each

iteration, the authors met and refined the themes.

4 RESULTS
4.1 Quantitative Analysis

Table 1: Statistical test.

Antipattern Approach Impact p-value Cliff’s delta (𝛿)

God Class Manual +ve 0.01 0.05 (Negligible)

Assisted +ve 1.89e-161 0.76 (Large)

Feature Envy Manual +ve 2.22e-06 0.19 (Small)

Assisted +ve 1.46e-161 0.76 (Large)

To show the effectiveness of JDeodorant in educating students

about better-making design decisions, we count the number of God
Class, and Feature Envy antipatterns before and after refactoring,
initially when students refactored the antipatterns manually (re-

ferred to asManual Refactoring), and then when students refactored
the antipatterns based on JDeodorant recommendations (referred

to as Assisted Refactoring). Figure 2 reports the box plots depicting
the distribution of each group value, clustered by the two above-

mentioned antipatterns. We used the Wilcoxon test [36] to test the

significance of the difference between the group’s values. This non-

parametric test checks continuous or ordinal data for a significant

difference between two dependent groups. Our hypothesis is for-

mulated to test whether the antipattern after the refactoring group

is significantly lower than the values of the antipatterns before the

refactoring group. The difference is considered statistically signifi-

cant if the p-value is less than 0.05. Furthermore, we used Cliff’s

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

(a) Impact of Manual Refactoring on God Class
Distribution

(b) Impact of Assisted Refactoring on God Class
Distribution

(c) Impact of Manual Refactoring on Feature Envy
Distribution

(d) Impact of Assisted Refactoring on Feature Envy
Distribution

Figure 2: Boxplots of (a) God Class, and (b) Feature Envy antipattern instances addressed by students.

org.apache.log4j.lf5.viewer.categoryexplorer.CategoryNode org.apache.log4j.lf5.viewer.categoryexplorer.CategoryNodeEditor

org.apache.log4j.lf5.viewer.categoryexplorer.CategoryNodeEditor

getTitle()
hasFatalRecords()
hasFatalChildren()
getNumberOfContainedRecords()
getNumberOfRecordsFromChildren()
getTotalNumberOfRecords()

getDisplayedProperties()

getDisplayedProperties()

Source/target accessed members: 0/6

Mo
ve
 M
et
ho
d

Figure 3: Feature Envy example from the Log4J project [2].

delta (𝛿) effect size to estimate the magnitude of the differences.

Regarding its interpretation, we follow the guidelines reported by

[20]: Negligible for | 𝛿 |< 0.147; Small for 0.147 ≤| 𝛿 |< 0.33;
Medium for 0.33 ≤| 𝛿 |< 0.474; and Large for | 𝛿 |≥ 0.474.

The count of corrected antipatterns was done manually by the

authors. Since the complete list of students’ submissions is too

large to examine manually, we selected a statistically significant

sample for our analysis and annotated 62 submissions. This quan-

tity roughly equates to a sample size with a confidence level of

95%, with a margin of error of 10%. As can be seen in Figure 2,

antipatterns (i.e., God Class and Feature Envy) before refactor-
ing are larger than the antipatterns after refactoring. While the

difference was statistically significant (0.011 and 2.22e-0 for God
Class and Feature Envy, respectively), the magnitude of the dif-

ference is negligible and small for God Class and Feature Envy,
respectively. We conjecture that although there is quality improve-

ment as the number of antipatterns decreased, there were many

instances where students’ Manual Refactorings could not remove

certain antipatterns, particularly the God Classes instances. How-

ever, assisted refactoring also had a positive impact on quality, as

the number of antipatterns (i.e., God Class and Feature Envy)
before refactoring is greater than the antipatterns after refactoring

(1.89e-161 and 1.46e-161 for God Class and feature envy, respec-
tively). However, the main difference lies in the magnitude of the

difference (Cliff Delta), which was large for the Assisted Refactoring,
according to Table 1. We conclude that JDeodorant’s assistance

was beneficial in improving students’ design decisions. Figure 3

shows an example of a Feature Envy design antipattern from one

of the student’s submissions. The CategoryNodeEditor class has
a method called getDisplayedProperties that seems overly in-

terested in the properties of the CategoryNode class. The method

getDisplayedProperties callsmanymethods from CategoryNode
class more than its own class methods (Coupling = 6). This indi-

cates that the method should belong to the CategoryNode class

instead. When the student applied the Move Method refactoring, as
recommended by JDeodorant, the Feature Envy antipattern was

removed, along with a decrease in the system’s overall coupling.

Observation. Not all antipatterns are easily refactorable. It is
important to note that despite students’ efforts to remove antipat-

terns, our analysis of Manual Refactoring code shows how many

instances of antipatterns existed after the refactoring session. In

particular, God Classes are difficult to refactor, as the magnitude of

the difference is negligible in Table 1. Previous research has demon-

strated how God classes tend to be hard to fix in industry [7]. So,

we emphasize the importance of raising students’ awareness, as a

preventive measure, to avoid creating God classes.

Observation. Understanding the impact of refactoring on
quality is challenging for students. Although both refactor-

ing sessions aim to improve quality, students realize, when they

compare their manual refactoring with the assisted one, that not

all refactorings can be equally beneficial to design quality. For in-

stance, the process of extracting multiple classes, to remove a God
Class antipattern, will eventually increase the number of classes per

package, which is also considered an increase in system complexity

according to the CK quality metrics [13]. Thus, students need to

consider these trade-offs as they make their choices. In this context,

quality gate tools, such as Understand
5
and SonarQube

6
can be

5
https://scitools.com/

6
https://sonarqube.org

https://scitools.com/

Automating Source Code Refactoring in the Classroom Conference’17, July 2017, Washington, DC, USA

Table 2: Student’s insight about the usefulness, usability and functionality of the tool.

Theme Sub-theme Example (Excerpts from a related student’s comment)

Usefulness

Efficiency

“JDeodorant is undoubtedly a very convenient tool for developers, he can easily fix various code smells and improve the
development efficiency of developers.”

Quality

“It can help to prioritize refactoring instances by selecting them based on their number of methods and attributes they have. It also
gives more details about classes and have an insight of the impact of refactoring.”

Automation “Overall my experience with the plugin was good. It takes most of the refactoring work and basically automates it.”

Awareness

“The product seemed to work well. Additionally, its ability to tell what refactoring to do and actually perform it seems super helpful,
andmore helpful if I actually knew what I was doing when refactoring.”

Experience

“My experience with JDeodorant was quite pleasant. It simplified the process of addressing flaws in the code and for someone
with limited software engineering experience related to code smells it was very informative.”

Usability

Graphical design

“the very intuitive graphical design of the plugin (for instance, doing things such as highlighting code that it changes in green)
makes such reviews far simpler than alternative approaches may provide.”

Preview

“I particularly liked IntelliJ’s display showing side-by-side diffs of what changed; it made it clear what was changing, which
in turn made it easier to interpret why the tool was suggesting the change.”

Visualization

“The JDeodorant version for eclipse provides the visual context/flow chart containing the breakdown of the bad smells and the
highlighted code. That proved to be very beneficial during the refactoring process, especially with god class.”

Documentation

“It is also an automated process, which is User friendly and it gives guidelines for the usage and it also pre-evaluates the
refactoring.”

Functionality
Design antipatterns “I found that jDeodorant did a great job at detecting any issues that were found.”

Refactoring

“I am happy I picked a smaller project to work on, it is significantly easier to see the effects of the changes. Most of the refactoring
that was suggested were various kinds of extraction, mostly methods.”

Recommendation

Quality

“It would have been nicer if the project checked for refactorings again automatically after applying one instead of the user
needing to use it.”

Design antipatterns

“I am really impressed with how this tool can detect the code smells and suggest refactoring to solve the problems. However, [...], it
can only detect three types of code smells. Many software has a wide range of other code smells not only (long method, god
class, feature envy) which are not possible to detect using this tool. ”

Refactoring

“some of it’s suggestion of the refactoring is incompleted, the suggestion name and logic detection has missed some part of the
code. So I feel this tool can only use as an quick reference in the code quality review”

Testing “Its hard to find if refactoring did break any of the feature or functionality remains the same even after refactoring.”

deployed to measure the quality before and after the application

of refactoring. This might strengthen students’ understanding of

writing well-structured code and raise their confidence to perform

the recommended refactoring.

4.2 Qualitative Analysis
In Table 2, we report the main thoughts, comments, and suggestions

about the overall impression of the usefulness, usability, function-

ality, and recommendation of the tool, according to the conducted

labeling. Figure 4 shows the percentages of students’ insight. As

can be seen, the ‘Functionality’ and ‘Usefulness’ categories had the

highest number of responses, with a response ratio of 34.6% and

32.1%, respectively. The category ‘Recommendation’ was the third

most popular category with 21.8%, followed by ‘Usability’, which

had a ratio of 11.5%. This finding indicates what students mainly

care about when using the tool. Table 2 presents samples of the

students’ comments to illustrate their impression of each theme.

Usefulness. Generally, the respondents found the plugin to be

useful in regards to five main aspects: efficiency, quality, automa-

tion, awareness, and experience. 40 out of 171 students commented

that JDeodorant is very intuitive to use and was quite efficient to

find refactoring opportunities, and convenient for developers who

would not have to examine and refactor antipatterns manually. 30

students communicated that eliminating antipatterns assists in in-

creasing its readability while reducing its coupling and complexity,
which helps improve overall code quality. A few students revealed

that the tool’s ability to identify antipatterns within a selected file

allows them to only correct errors in a specific location/file of their

interest, instead of inspecting the entire project. Further, two stu-

dents commented that the tool aids less experienced developers

in identifying the antipatterns when updating a source file that

they are not necessarily familiar with. Additionally, a group of stu-

dents mentioned that the tool helps less experienced and novice

developers in writing well-structured code.

Usability. Based on the feedback provided by the students, the

key areas in usability related to the graphical design, preview, visual-

ization, and documentation. Five students pointed out the graphical

design of the plugin is intuitive, especially the IntelliJ IDEA’s display

feature showing side-by-side diffs of what changed. This preview

feature makes it clear what was changing and why the tool was

suggesting the change. Other comments also stated the importance

of the preview feature, which allows them to foresee the impact of

the change without actually performing it. Two students reported

the useful feature of antipattern visualization as a flow chart, as it

allows locating the hot areas in code that encapsulate a large set of

smells. Lastly, the documentation of the plugin is written and easy

to follow.

Functionality. According to the students’ feedback about the

tool’s functional features, 34.6% of the students’ comments show a

couple of appreciation for the supported antipatterns by the tool,

and how this feature helps in better understanding the concepts

in a real-world scenario. Additionally, the students commented on

their ability to practice a variety type of refactoring operations

according to their removal of the antipatterns.

Recommendation. From the students’ feedback, we have also

extracted suggestions to improve the tool’s features. 21.8% of the

students’ comments show a couple of suggested changes as a rec-

ommendation or refactoring support to be made to the tool’s op-

eration or UI. We found out the students pointed out some of the

recommendations related to quality, antipatterns, refactoring, and

Conference’17, July 2017, Washington, DC, USA AlOmar et al.

Functionality

34.6%

Usefulness

32.1%

Recommendation

21.8%

Usability

11.5%

Figure 4: Students’ perception about the refactoring tool.
testing. Students recommend the tool to perform a sanity check

after performing the application of refactoring, support more an-

tipatterns, perform the complete application of refactoring, and

perform testing in order to check the behavior preservation of code

transformation after refactoring.

5 REFLECTIONS
à Reflection #1: Raising the awareness of antipatterns and
their refactoring strategies. Previous studies [3, 24, 29, 33, 34]
have proposed different methods to teach refactoring, but did not

provide students with toolset to practice it. It is still a manual

process that might contribute in a limited way in the long run.

However, if students learn how to automate refactoring, it helps

them to better refactor the code while preserving the behavior and

making the code less prone to error. Further, in education, there are

many concepts related to design principles that are taught in the

classroom, such as SOLID and GRASP. However, the responses that

we received from students, have shown the importance of covering

design anti-patterns, and bad programming practices avoidance in

curricula, as these topics are generally less popular, compared to

design patterns. In many CS and SE curricula, instructors highlight

software quality when teaching good programming practices and

design patterns. This assignment complements it by revealing how

deviation from best practices can lead to poor design choices that

negatively impact the source code. Similarly to teaching blueprints

of design patterns, students should also be exposed early to quality

concerns and encouraged to improve the design of their own code.

Moreover, one of the noteworthy points is that using the tool in

the assignment helps less experienced and novice coders to write

well-structured code. To further raise awareness, educators can

include empirical evidence to enhance students’ understanding of

refactoring and antipatterns concepts and so students providing

low-quality code can be convinced that these concepts help improve

the quality of software systems.

à Reflection #2: Reinforcing software engineering princi-
ples and good development practices. Studies have shown how

group-based project artifacts tend to be purposely over-engineered

complex models as a means to showcase the ability to design com-

plex systems [10, 14]. Through this assignment, students would

realize that over-engineered systems tend to contain more design

anti-patterns, and therefore simplifying them is necessary for their

code to become easier to maintain in the future. According to stu-

dents’ insights, we believe that instructors need to highlight the

desirable properties of refactoring tools (e.g., quality improvement,

developer perception, automated testing, etc). Future educators and

researchers are encouraged to revisit existing refactoring tools so

that students can gain more confidence in using them. Moreover,

since the classical definition of refactoring focuses on behavior

preservation of the applied transformation, instructors might con-

sider pointing out some behavior preservation strategies (e.g., [6])
and explore their potential in assessing the correctness of the refac-

tored code (e.g., for the context of JDeodorant, the students can run

unit tests to verify that the applied refactoring was behaviorally

preserved).

6 RELATEDWORK
Smith et al. and Stoecklin et al. [33, 34] introduced an incremental

approach by focusing on lessons from an innovative pedagogical

approach to teaching refactoring, such as self-documenting code

and better recognizing code. The authors conclude that refactor-

ing can become an integral component of the computer science

curriculum by reinforcing software engineering principles. Rabb

[31] introduced CodeSmellExplorer to familiarize users with good

coding practices by visualizing an interactive graph network of

antipatterns and connected refactorings. Lobez et al. [29] described
e-activities for teaching refactoring by following Bloom’s taxon-

omy (i.e., proposing activities to help with understanding a concept,

applying refactorings in the context of and synthesizing of the

use of refactorings in open source projects). Elezi et al. [17] pro-
posed a gamification system that tracks and rewards refactorings

during development. Haendler and Neumann [21] explored the

challenges of designing serious games for refactoring on real-world

code artifacts. Specifically, they proposed a game design where stu-

dents can compete either against a predefined benchmark (technical

debt) or against each other. In a follow-up work, Haendler et al.
[22, 23] developed an interactive tutoring system for training soft-

ware refactoring. Keuning et al. [25, 26] to teach students to refactor
functionally correct code. More recently, Izu et al. [24] proposed a

lab-based resource to help novices identify and refactor antipatterns

when writing conditional statements. Although there are recent

studies that explored refactoring practice in education in a general

context, to the best of our knowledge, no prior studies have exposed

the students to the process of detecting bad programming practices,

and correcting them through applying suitable refactorings.

7 CONCLUSION AND FUTUREWORK
In this study, we performed an experiment to understand how

students perform the application of refactoring. Specifically, we

demonstrate running an assignment about using the tool JDeodor-

ant to refactor antipatterns. Overall, the participants rated various

aspects of the plugin highly, while also providing valuable ideas for

future development. We envision our findings enabling educators

to support students with refactoring tools tuned towards safer refac-

toring. Future work in this area includes investigating students’

understanding of refactoring using various real-world applications

in a semester-long course project. This offers the opportunity for

students to choose a refactoring-related topic.

Automating Source Code Refactoring in the Classroom Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] [n. d.]. https://anonymousresearchersubmission.github.io/SIGCSE2023_

JDeodorant/.

[2] [n. d.]. https://github.com/apache/logging-log4j2.

[3] Shamsa Abid, Hamid Abdul Basit, and Naveed Arshad. 2015. Reflections on

teaching refactoring: A tale of two projects. In Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education. 225–
230.

[4] Eman Abdullah AlOmar, Salma Abdullah AlOmar, and MohamedWiem Mkaouer.

2023. On the use of static analysis to engage students with software quality

improvement: An experience with pmd. arXiv preprint arXiv:2302.05554 (2023).
[5] Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem Mkaouer, and Ali

Ouni. 2022. Code Review Practices for Refactoring Changes: An Empirical Study

on OpenStack. (2022), 1–13.

[6] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian Newman, and Ali

Ouni. 2021. On preserving the behavior in software refactoring: A systematic

mapping study. Information and Software Technology (2021), 106675.

[7] Nicolas Anquetil, Anne Etien, Gaelle Andreo, and Stéphane Ducasse. 2019. De-

composing god classes at siemens. In 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 169–180.

[8] Sarah L Ash and Patti H Clayton. 2009. Generating, deepening, and documenting

learning: The power of critical reflection in applied learning. (2009).

[9] Gabriele Bavota, Andrea De Lucia, Massimiliano Di Penta, Rocco Oliveto, and

Fabio Palomba. 2015. An experimental investigation on the innate relationship

between quality and refactoring. Journal of Systems and Software 107 (2015),

1–14.

[10] Leema K Berland, Taylor H Martin, Pat Ko, Stephanie Baker Peacock, Jennifer J

Rudolph, and Chris Golubski. 2013. Student learning in challenge-based engi-

neering curricula. Journal of Pre-College Engineering Education Research (J-PEER)
3, 1 (2013), 5.

[11] Narjes Bessghaier, Ali Ouni, and Mohamed Wiem Mkaouer. 2021. A longitudinal

exploratory study on code smells in server side web applications. Software Quality
Journal 29, 4 (2021), 901–941.

[12] Anne Brockbank and Ian McGill. 2007. Facilitating reflective learning in higher
education. McGraw-Hill Education (UK).

[13] Shyam R Chidamber and Chris F Kemerer. 1994. A metrics suite for object

oriented design. IEEE Transactions on software engineering 20, 6 (1994), 476–493.

[14] Carol L Colbeck, Susan E Campbell, and Stefani A Bjorklund. 2000. Grouping in

the dark: What college students learn from group projects. The Journal of Higher
Education 71, 1 (2000), 60–83.

[15] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis

in software engineering. In 2011 international symposium on empirical software
engineering and measurement. IEEE, 275–284.

[16] Ward Cunningham. 1992. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4, 2 (1992), 29–30.

[17] Leonard Elezi, Sara Sali, Serge Demeyer, Alessandro Murgia, and Javier Pérez.

2016. A game of refactoring: Studying the impact of gamification in software

refactoring. In Proceedings of the Scientific Workshop Proceedings of XP2016. 1–6.
[18] Martin Fowler, Kent Beck, John Brant, William Opdyke, and don Roberts. 1999.

Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA. http://dl.acm.org/citation.cfm?id=311424

[19] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar, Timofey Bryksin,

and Mohamed Wiem Mkaouer. 2021. One thousand and one stories: a large-scale

survey of software refactoring. In Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1303–1313.

[20] Robert J Grissom and John J Kim. 2005. Effect sizes for research : a broad practical
approach. Mahwah, N.J. ; London : Lawrence Erlbaum Associates. Formerly CIP.

[21] Thorsten Haendler and Gustaf Neumann. 2019. Serious refactoring games. In

Proceedings of the 52nd Hawaii International Conference on System Sciences.
[22] Thorsten Haendler, Gustaf Neumann, and Fiodor Smirnov. 2019. An interactive

tutoring system for training software refactoring. Instructor 1 (2019), 4.
[23] Thorsten Haendler, Gustaf Neumann, and Fiodor Smirnov. 2019. RefacTutor: an

interactive tutoring system for software refactoring. In International Conference
on Computer Supported Education. Springer, 236–261.

[24] Cruz Izu, Paul Denny, and Sayoni Roy. 2022. A Resource to Support Novices

Refactoring Conditional Statements. In Proceedings of the 27th ACM Conference
on on Innovation and Technology in Computer Science Education Vol. 1. 344–350.

[25] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2020. Student refactoring

behaviour in a programming tutor. In Koli Calling’20: Proceedings of the 20th Koli
Calling International Conference on Computing Education Research. 1–10.

[26] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2021. A tutoring system to

learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium on
Computer Science Education. 562–568.

[27] Foutse Khomh, Massimiliano Di Penta, and Yann-Gael Gueheneuc. 2009. An

exploratory study of the impact of code smells on software change-proneness. In

2009 16th Working Conference on Reverse Engineering. IEEE, 75–84.

[28] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano

Antoniol. 2012. An exploratory study of the impact of antipatterns on class

change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–

275.

[29] Carlos López, Jesús M Alonso, Raúl Marticorena, and Jesús M Maudes. 2014. De-

sign of e-activities for the learning of code refactoring tasks. In 2014 International
Symposium on Computers in Education (SIIE). IEEE, 35–40.

[30] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Fausto Fasano, Rocco

Oliveto, and Andrea De Lucia. 2018. On the diffuseness and the impact on

maintainability of code smells: a large scale empirical investigation. Empirical
Software Engineering 23, 3 (2018), 1188–1221.

[31] Felix Raab. 2012. CodeSmellExplorer: Tangible exploration of code smells and

refactorings. In 2012 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 261–262.

[32] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We

Refactor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 858–870. https:

//doi.org/10.1145/2950290.2950305

[33] Suzanne Smith, Sara Stoecklin, and Catharina Serino. 2006. An innovative

approach to teaching refactoring. In Proceedings of the 37th SIGCSE technical
symposium on Computer science education. 349–353.

[34] Sara Stoecklin, Suzanne Smith, and Catharina Serino. 2007. Teaching students to

build well formed object-oriented methods through refactoring. ACM SIGCSE
Bulletin 39, 1 (2007), 145–149.

[35] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2018.

Ten years of JDeodorant: Lessons learned from the hunt for smells. In 2018 IEEE
25th international conference on software analysis, evolution and reengineering
(SANER). IEEE, 4–14.

[36] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics
bulletin 1, 6 (1945), 80–83.

https://anonymousresearchersubmission.github.io/SIGCSE2023_JDeodorant/
https://anonymousresearchersubmission.github.io/SIGCSE2023_JDeodorant/
https://github.com/apache/logging-log4j2
http://dl.acm.org/citation.cfm?id=311424
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2950290.2950305

	Abstract
	1 Introduction
	2 JDeodorant Workflow
	3 Experimental Setup
	3.1 Teaching Context and Participants
	3.2 Assignments Content and Format
	3.3 Data Analysis

	4 Results
	4.1 Quantitative Analysis
	4.2 Qualitative Analysis

	5 Reflections
	6 Related Work
	7 Conclusion and Future Work
	References

