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ABSTRACT
Infrastructure-as-Code (IaC) is an emerging software engineering
practice that leverages source code to facilitate automated config-
uration of software systems’ infrastructure. IaC files are typically
complex, containing hundreds of lines of code and dependencies,
making them prone to defects, which can result in breaking on-
line services at scale. To help developers early identify and fix
IaC defects, research efforts have introduced IaC defect prediction
models at the file level. However, the granularity of the proposed
approaches remains coarse-grained, requiring developers to inspect
hundreds of lines of code in a file, while only a small fragment of
code is defective. To alleviate this issue, we introduce a machine-
learning-based approach to predict IaC defects at a fine-grained
level, focusing on IaC blocks, i.e., small code units that encapsu-
late specific behaviours within an IaC file. We trained various ma-
chine learning algorithms based on a mixture of code, process, and
change-level metrics. We evaluated our approach on 19 open-source
projects that use Terraform, a widely used IaC tool. The results
indicated that there is no single algorithm that consistently out-
performs others in 19 projects. Overall of the six algorithms, we
observed that the LightGBM model achieved a higher average of
0.21 in terms of MCC and 0.71 in terms of AUC. Models analysis
reveals that the developer’s experience and the relative number of
added lines tend to be the most important features. Additionally,
we found that blocks belonging to the most frequent types are more
prone to defects. Our defect prediction models have also shown
sensitivity to concept drift, indicating that IaC practitioners should
regularly retrain their models.
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1 INTRODUCTION
A recent trend in the DevOps movement’s practice attempts to
automate the configuration process of infrastructure deployment,
known as Infrastructure-as-Code (IaC). IaC is an emerging software
engineering practice that uses machine-readable files to provision
and configure software infrastructures, diverging from conven-
tional manual hardware setup or interactive configuration tools
[54, 79, 88]. In IaC, practitioners can incorporate coding principles
such as automated testing and version control. To improve the
readability of IaC files, practitioners use blocks similar to meth-
ods or functions in traditional software development. These blocks
are designed to describe behaviours for declaring infrastructure
components. Given these significant advantages, various IaC tools,
including Ansible [49], Terraform [35], and CloudFormation [42]
have gained widespread adoption among practitioners [30]. To take
advantage of its usage, several companies have recently integrated
IaC into their development pipelines to streamline the implemen-
tation process of infrastructure changes, such as Shopify [25] and
Uber [14].

Although IaC strives to automate the delivery process, various
challenges can hinder its adoption in practice, including technical
debt and bugs within IaC files [78]. It is also challenging to deal
with the complexity of IaC code related to managing different com-
ponents of the configuration infrastructure. Therefore, the IaC code
could be susceptible to misconfigurations and defects, which could
have severe consequences [74]. In practice, IaC defects are preva-
lent and may affect millions of end-users causing service outages,
and systems unavailability [38]. A recent example manifests in the
terraform-aws-modules/terraform-aws-eks [1] module which
is widely used by IaC practitioners to orchestrate and manage easily
Kubernetes clusters in AWS environments using Terraform files.
However, the module users have faced a significant issue since 2020
[44]. This issue revolves around cyclic dependency errors between
infrastructure components, and several users reported that this
problem persisted and caused infrastructure outages [29].

Early studies have explored the nature of IaC defects by provid-
ing metrics to assess the quality of IaC files. For example, Rahman
et al. [78] proposed eight patterns to categorize a defect in IaC
files. Dalla et al. [38] and Rahman et al. [82] used machine learning
(ML) techniques to build defect prediction models based on IaC
source code metrics and historical change. Defect prediction (DP)
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models are a strategic allocation of testing and inspection resources,
focusing on software artifacts that are more prone to defects. Fur-
thermore, Dalla et al. [38] constructed the IaC defect models by
extracting metrics based on the releases of Ansible-based projects.
However, two limitations can hinder the adoption of the proposed
IaC defect models. First, since an IaC file can be divided into blocks
that abstract the infrastructure configuration, not all blocks within
a defective file contain defects. Consequently, IaC practitioners can
still waste time and effort inspecting clean blocks that may not con-
tain defects. Therefore, IaC defect models are still needed at more
fine-grained granularity. Secondly, relying on defect prediction at
the release level makes it difficult to pinpoint which practitioners
should inspect the predicted IaC file, as numerous practitioners
can frequently collaborate on the same file. Thus, there is a need
for instantaneous prediction that allows direct inspection based on
Just-In-Time defect prediction (JIT) models. JIT is a kind of defect
prediction, known as change level, which predicts code changes in
committed files that may be more prone to defects [43, 60, 68, 76].
JIT permits timely detection of potential commits when a commit is
made, allowing for the avoidance of infrastructure server outages.

To address these issues, we introduce a fine-grained prediction
approach to predict whether a block in an IaC file is likely to be
defective. To provide IaC practitioners with early detection, our
approach leverages Just-in-time (JIT) defect prediction. Our ap-
proach predicts the changed blocks that were altered by the added
or deleted lines at the commit level. In our study, we investigate the
within-project defect prediction in which each project has its defect
prediction models. Our research is explicitly focused on Terraform-
based projects, as Terraform is widely recognized and widely used
for provisioning among IaC practitioners [2, 20]. To the best of
our knowledge, no previous IaC study has investigated the defects
prediction in Terraform-based projects. We conducted an empiri-
cal study to train and test six machine learning algorithms on 19
datasets collected from open-source Terraform-based projects. We
train the models on the code, process, and change level metrics.
Our study addresses the following research questions:
RQ1 (Model Performance): How effective is our approach in
IaC defects prediction at the block level? RQ1 aims to determine
a suitable model that could accurately predict defective blocks. The
results show that ML algorithms can predict the defects at the block
level in IaC files with a prominent performance. Meanwhile, our
findings indicate that there is no single ML model that outperforms
consistently better in all projects. We observed that LighGBM tend
to be best best-performing model achieving an average score of
0.71 in AUC and 0.21 in MCC.
RQ2 (Feature Importance): Which features are the most in-
fluential for IaC defects prediction at the bloc level? RQ2
investigates the key features among code, process, and delta (i.e.,
change) features. The top-3 features are the recent experience, the
proportion of lines added within a changed block, and frequently
changed block types.
RQ3 (Model Stability): To what extent does our approach ad-
dress concept drift? RQ3 assesses the stability of our models over
time as data can change, potentially leading to a degradation in the
performance of prediction models due to shifts in the relationship
between independent variables and the ground truth. Our results

indicate that concept drift is common in the studied projects and
training on more recent data improves the model’s performance as
compared to using older data in at least 13 out of 19 projects.
Replication Package. We provide a comprehensive replication
package of our dataset and scripts available online [18].
Paper Organization. The remainder of this paper is divided as
follows. In Section 2, we present the background and related works.
In Section 3, we describe the study methodology, while in Section 5,
we provide implications of our study, and we discuss the potential
threats to our study in Section 6. Lastly, we draw our conclusions
and future directions in Section 7.

2 BACKGROUND & RELATEDWORKS
2.1 IaC & Terraform
Terraform is an infrastructure-as-code (IaC) ecosystem that auto-
mates infrastructure provisioning in various data centers and cloud
providers [23]. It also supports multi-cloud provisioning, allowing
users to work with different cloud resources such as AWS Lambda
[12], Azure Active Directory [40], and Google Cloud Load Balancers
[28]. The Terraform ecosystem consists of the following two key
components: (i) Terraform Core, which serves as a compiler, ex-
ecuting configurations authored by Terraform practitioners and
generating a file known as the State File that summarizes the depen-
dencies between the various declared components; (ii) Terraform
Plugins, which are modules that interpret and execute information
within the State File and facilitate communication with cloud plat-
forms through application programming interface [23]. Terraform
offers numerous advantages to establishing in high-quality software
system infrastructures.

Terraform allows practitioners to declaratively configure their
manifests using the HashiCorp Configuration Language (HCL)
[24]. In this ecosystem, HCL plays a pivotal role. HCL is a human-
readable language used for composing IaC manifests, typically
saved with the “.tf” extension. Within HCL, developers encounter
two fundamental elements: (i) arguments (i.e., attributes), repre-
senting parameter key-value pairs, and (ii) blocks, which serve
as containers for these attributes and nested blocks, as exempli-
fied in Listing 1. Terraform categorizes these elements into eight
block types: Resources, Data Sources, Providers, Variables, Outputs,
Modules, Locals, and Terraform Configuration.

As an illustration of these blocks, Listing 2 presents an HCL
configuration to create a virtual machine on the AWS platform. The
code snippet first specifies the version of the AWS provider within
the Terraform block and defines the version of the Terraform core. It
then specifies the region of the data center where the infrastructure
will be created. Subsequently, the resource block is used to describe
the characteristics of the virtual machine, initializing attributes
such as the ami (i.e., identifier), defining the type of instance, and
assigning a name. Additionally, variable and locals can be used
to encapsulate certain characteristics, providing a way to refactor
and avoid direct manipulation of resource attributes. Finally, the
output block can be used to retrieve the public address of the virtual
machine after its creation.

Listing 1: HCL Syntax
1 <BLOCK TYPE> " <BLOCK ␣ LABEL> " " <BLOCK ␣ LABEL> " {
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2 <IDENTIFIER > = <EXPRESSION> # Argument
3 <BLOCK LABEL> { # Nested B l o c k s
4 }
5 }

Listing 2: HCL VM Creation Example
1 t e r r a f o r m {
2 r e q u i r e d _ p r o v i d e r s {
3 aws = { s o u r c e = " h a s h i c o r p / aws " , v e r s i o n =

" ~> ␣ 4 . 1 6 "
4 }
5 }
6 r e q u i r e d _ v e r s i o n = " >= ␣ 1 . 2 . 0 "
7 }
8
9 p r o v i d e r " aws " {

10 r e g i o n = " us −west −2 "
11 }
12
13 l o c a l s {
14 ami = " ami −830 c94e3 "
15 }
16
17 v a r i a b l e " i n s t a n c e _ t y p e " {
18 d e s c r i p t i o n = "VM␣ I n s t a n c e ␣ S p e c i f i c a t i o n "
19 d e f a u l t = " t 2 . micro "
20 }
21
22 r e s o u r c e " a w s _ i n s t a n c e " " a p p _ s e r v e r " {
23 ami = l o c a l . ami
24 i n s t a n c e _ t y p e = var . i n s t a n c e _ t y p e
25 t a g s = {
26 Name = " ExampleAppServe r Ins t ance "
27 }
28 }
29
30 o u t p u t " instance_vm_name " {
31 v a l u e = a w s _ i n s t a n c e . a p p _ s e r v e r . p u b l i c _ i p
32 }

2.2 Related Works
Recently, IaC has garnered increasing interest within the research
community. Several studies align with our research exploring the
adoption, challenges, and, notably, the defects associated with IaC.

Jiang et al. [54] studied the co-evolution between IaC and other
code artifacts (build, test, production) to examine the growth in
size and complexity of IaC files. They found that IaC scripts un-
dergo recurring changes. Subsequently, Sharma et al. [88] explored
code smells in IaC scripts and proposed 13 implementations and
11 design configuration smells related to Puppet projects. Rahman
et al. [78] proposed a defect taxonomy for IaC scripts to help prac-
titioners classify defective puppet files. To validate the proposed
taxonomy, they surveyed 66 practitioners. They found that practi-
tioners settled mainly on issues related to idempotency. Opdebeeck
et al. [74] also investigated variables that could lead to infrastruc-
ture outages in the context of Ansible. They pinpointed six code
smells related to Ansible’s complex variable priority rules and lazy-
evaluated template expressions. They observed an increasing trend
in variable smells over time, emphasizing that it may take a con-
siderable amount of time to fix and may also introduce new code
smells. These results underscore the need for more extensive quality
checks for the IaC code. Subsequently, Saavedra et al. [86] proposed
a technology-agnostic framework called GLITCH, which identi-
fies security smells in different IaC technologies. The approach
identifies nine security smells in three IaC technologies (Ansible,

Chef, or Puppet). GLITCH transforms the provided IaC code into
an intermediate representation to streamline the tagging of secu-
rity smells. When comparing their results with existing security
detection tools, they found that GLITCH showed higher precision
and recall compared to current state-of-the-art tools.

Concerning the prediction of defects in IaC, Rahman et al. [82]
studied defective puppet files that could exist in open-source projects
such as Miratis, Mozilla, OpenStack, and Wikimedia. First, they an-
alyze the commit message to determine the defect-related commits.
Then, they extracted the code properties that could characterize the
changed Puppet file. They applied qualitative analysis to identify 12
source code properties correlating with defective Puppet files. They
notice that “lines of code” and “hard-coded string” strongly correlate
with defective IaC files. Subsequently, they constructed defect pre-
diction models on different metrics such as code sources, process,
implementation smells, and bag-of-words metrics and reported a
precision of 0.70 ~ 0.78 and a recall of 0.54 ~ 0.67.

Recently, Dalla et al. [38] studied the defects that concern Ansible
files. They proposed a complete machine learning pipeline for IaC
defect predictions that collects Ansible files and their metrics, builds
learners, and evaluates. To validate this pipeline, they analyzed
104 open-source projects on GitHub and extracted metrics at the
release level. They employed five machine learning classifiers and
found that RandomForest is the best-performing model. Moreover,
they found that product metrics identify defective IaC scripts more
accurately than process metrics.

While most previous IaC research has focused on defects and
code smells to enhance configuration manifest quality, these studies
have primarily concentrated on configuration management tools
designed to aid developers in configuring and managing their appli-
cations after establishing infrastructures such as Puppet, Ansible,
and Chef. These tools can be classified as Configuration-as-Code
Tools. Our study complements those mentioned above to build a
complete ontology for IaC. Our study studies defects in provisioning
tools, focusing on Terraform files at the commit level (i.e., change)
using machine learning algorithms. To make it a more fine-grained
technique, we focus on the changed blocks of configuration (i.e.,
units) where the defects could occur, aiming to reduce the effort of
inspecting large and complex Terraform files.

3 STUDY DESIGN
We aim to predict whether a modified Terraform block could be
defective. This prediction helps developers with detailed viewpoints
when analyzing intricate changes. To achieve this goal, the work-
flow of our study is depicted in Figure 1, which comprises three
essential phases: (1) Context Selection, (2) Dataset Construction, (3)
Model Construction, and (4) Statistical test Usage. In the following,
we provide an overview of each of these phases.

3.1 Context Selection
Previous studies on Infrastructure as Code (IaC) focused mainly on
configuration management tools [38, 78, 80]. Consequently, existing
IaC datasets are limited to Chef, Puppet, and Ansible. To overcome
this limitation, we use the GitHub Code Search API to pinpoint
open-source projects that contain at least one Terraform file [15].
These Terraform files must have a “.tf” extension, as selecting by
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Figure 1: An overview of our study approach

the HCL language could result in unrelated projects that use HCL
for purposes other than Terraform, such as Packer [17] or Boundary
[13], which are other HashiCorp Technologies.

Initially, we used the search query “extension:tf” to identify repos-
itories indexed and sorted by the GitHub Code Search API. This
approach produces a maximum of 1,000 indexed files during a
search period [19, 101]. We used a sorting method relying on Last
Indexed Files filter that tracks the updated files in GitHub reposito-
ries, following the study of Verdet et al. [101]. During 7 days, we
executed our extension query hourly, totaling 12 daily searches. We
collected 1,093 distinct projects. We filtered out 3 archived, 406 non-
starred, and 93 non-licensed projects, resulting in a selection of 591
projects. To ensure the inclusion of only relevant repositories in our
study, we examined the list of projects and excluded those designed
for educational courses, labs, or workshops. We excluded provider
repositories developed by HashiCorp contributors in GoLang, such
as hashicorp/terraform-provider-aws [48], where Terraform
files are primarily used to test provider functionalities. Through
this dataset curation, we ended up with a subset of 523 projects (68
excluded). In this step, we aim to reduce the likelihood of includ-
ing prototype or test projects where Terraform files serve as mere
demonstrations.

Researchers caution against relying on the GitHub collected
data without proper preprocessing [59, 70, 100], as many of these
projects are non-relevant and may lead to conclusions instability.
Based on their recommendations, we applied three criteria (i.e.,
C1, C2, C3) to filter out projects with insufficient information on
software development. Dalla et al. [38] used the previous criteria to
select Ansible-based projects. Moreover, we added another criterion
(i.e., C4) in which to get a sufficient number of IaC files as used by
Rahman et al. [81]. On the other hand, a recent report from GitHub
[47] attests to a considerable increase in the use of Terraform in
recent years (2022-2023). We believe that this increase may induce
projects that do not promote a dynamic IaC practice (e.g., rarely
commits that modify IaC files). To mitigate that, we added three
block-related criteria (i.e., C5, C6, C7). As follows, we define the
criteria used, along with their underlying rationale, and illustrate
the count of projects that meet each criterion:

• C1: Commit frequency. The average monthly commits
must be at least 7.0. C1 aims to illustrate the presence of
continuous evolution. With C1, we obtained 440 projects.

Table 1: Statistics of the projects studied

Project Creation date LOC
# of

Commits
Changed
Blocks

Defective
Block ratio

kubernetes-sigs/kubespray Oct 03, 2015 30,186 7,314 1,035 16%
oracle-terraform-modules/terraform-oci-oke Mar 22, 2019 8,866 445 1,933 16%
chanzuckerberg/cztack Jun 27, 2018 7,874 504 1,357 20%
zenml-io/mlstacks Jun 29, 2022 11,368 412 1,839 26%
cloudfoundry/bosh-bootloader Jan 25, 2016 271,919 3,173 1,823 8%
cattle-ops/terraform-aws-gitlab-runner Nov 20, 2017 2,859 977 997 25%
ministryofjustice/cloud-platform-infrastructure Feb 23, 2018 9,406 4,679 2,409 12%
Azure/az-hop Nov 19, 2020 11,775 3,923 1,265 5%
magma/magma Feb 15, 2019 566,380 12,116 542 8%
GoogleCloudPlatform/cloud-foundation-fabric May 03, 2019 66,325 4,691 5,812 23%
SUSE/ha-sap-terraform-deployments Oct 19, 2018 16,720 2,264 6,081 10%
Azure/Avere Aug 03, 2018 127,987 3,301 930 36%
CDCgov/prime-simplereport Oct 08, 2020 77,432 4,118 1,545 8%
Worklytics/psoxy Sep 21, 2021 35,207 1,922 1,536 20%
Azure/sap-automation Nov 16, 2021 89,764 2,666 2,187 10%
aws-observability/terraform-aws-observability-accelerator Aug 16, 2022 5,006 226 487 26%
kube-hetzner/terraform-hcloud-kube-hetzner Jul 30, 2021 2,755 1,452 1,328 15%
PaloAltoNetworks/terraform-azurerm-vmseries-modules Oct 1, 2020 4,858 447 962 11%
cookpad/terraform-aws-eks Nov 15, 2019 1,161 536 535 17%

• C2: Core Contributors. The project requires a minimum
of two contributors, and their combined number of commits
must constitute 80% or more of the overall contributions. C2
seeks to regulate the interaction among contributors. This
criterion yielded 371 projects.

• C3: Push event. The project should have seen at least one
push event to its main branch within the past six months.
C3 seeks indications of recent activity in development. With
C3, we achieved 278 projects.

• C4: Ratio of IaC scripts. A minimum of 11% of the project
files must consist of IaC scripts. C4 seeks to demonstrate
the presence of an ample number of IaC scripts. With this
criterion, we attained 76 projects.

• C5: Sufficient number of changed blocks The project
should have a minimum of 300 modified blocks distributed
among various commits. C5 provides evidence of a satis-
factory number of evolving Terraform blocks, which indi-
cate frequent block modifications. This criterion selected 63
projects.

• C6: Ratio of defects in changed blocks. The project must
have at least 5% of defects in its changed blocks. C6 ensures
projects that address and resolve defective blocks. This crite-
rion yielded 46 projects.

• C7: Number of defective blocks in the last six months.
The project must have at least 3 defective blocks in the last
six months. C7 aims to identify projects with recent and
tangible defective blocks meaning that developers still face
issues with Terraform blocks. With this criterion, we ended
up with 19 projects.

With the aforementioned criteria, we aimed to ensure the quality
and relevance of the selected projects for our study that demon-
strate sufficient IaC practice in their software development. Table 1
summarizes a statistical illustration of the datasets studied.

3.2 Dataset Creation
After selecting projects containing Terraform files, our subsequent
steps involve identifying and fixing commits to resolve issues within
the Terraform blocks. These steps aim to label the changed blocks
as defective or neutral. Furthermore, we explain how we extract
the changed blocks and measure code, process, and delta metrics.
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3.2.1 Fixing-Commits Identification. To do that, we systematically
analyze each project’s commit history, focusing on commits whose
associated messages indicate bug and fault corrections. Like previ-
ous studies in defect prediction [38, 73, 75], we use a set of keywords
to mark a commit as fixing, such as: “fix”, “error”, “patch”, and “flaw”.
Moreover, an identified commit containing these keywords must in-
clude changes to Terraform files. Importantly, we exclude changes
related to comments, white spaces, and alterations to the docu-
mentation. However, relying solely on keyword-based techniques
may result in false positive commits. Meanwhile, manually vali-
dating all commits can be a time-consuming endeavor [66, 100].
To mitigate that, we incorporate a method similar to that used
by Rahman et al. [78] to categorize defective files in Puppet. This
technique uses the root keywords of commits that can help catego-
rize defective files in Puppet. We analyze the root keyword of the
commit message to determine if it aligns with established patterns
indicative of bug-fixing actions. For example, we observed this prac-
tice in terraform-aws-modules/terraform-aws-eks [11], where
contributors use the “fix” keyword as the root in their commit mes-
sages (e.g., commit d2f162b [3]) when addressing corrective actions
and document the bug fixes in the CHANGELOG.md file [4].

To assess the accuracy of the identification of the fixed blocks,
two authors conducted a manual validation on a representative
sample of 379 fixed blocks out of 24,374 changed blocks across all
the studied projects, with a confidence level of 95% and a confidence
interval of 5%. Similar to the study of Openja et al. [75], we carried
out an independent labeling experiment by casting a vote of either
“True”, “False”, or “Unclear” labels on the fixed blocks. While the
“True” labels represent the correct fixed blocks, the “False” labels rep-
resent an incorrect fixed block identification. The “Unclear” is used
when the annotator is not able to decide whether the subject block
is fixed or not before the discussion between the authors. A conflict
is considered when the authors disagree on the inspected instance
that has different labels “True”, “False”, or “Unclear”. Later, the au-
thors met to resolve all the unclear (i.e., being labeled as “Unclear”
by at least one annotator) and disagreement cases. A key obser-
vation was that some fixes affected the description argument
of the blocks, which was considered as documentation changes
rather than functional code modifications [5], thus classifying them
as false positives. The discussion resulted in the resolution of 10
unclear instances. Overall, the authors identified 37 false positive
instances, while 342 were true positives. The precision of the cor-
rectly identified fixed blocks was calculated, resulting in a precision
rate of 90.24%. We reduce the impact of mislabeled fixed blocks
by implementing a filter that ignores the change that affects the
description argument of any block.

3.2.2 Defect-Commits Identification. After identifying the set of
fixing commits, we proceeded to apply the Śliwerski, Zimmermann,
and Zeller (SZZ) [92] algorithm to each fixing commit within the
project to identify the commit that introduced the bug fixed in the
fixing commit. The algorithm analyzes the commits in reverse order,
starting from the most recent and moving backward. SZZ first uses
the “git diff” command to extract all previously modified lines from
the code. Afterward, the “git blame” command reveals the revision
and the author who made the last modification to each line in a
file. This command helps determine the changes that introduced

the defective lines, resulting in the bug-inducing commit. There
are several variants of the SZZ algorithm in research, including
AG-SZZ [63], MA-SZZ [37], and RA-SZZ [72], designed to enhance
accuracy and reduce mislabeled changes. Since the original SZZ (B-
SZZ [92]) can be sensitive to noise, Fan et al. [41] conducted a study
to investigate the results generated by the four variants of SZZ. They
showed that RA-SZZ is a robust version of SZZ. However, applying
RA-SZZ relies on RefactoringMiner [99] which makes it specific for
Java programs. Moreover, They found that Meta-Change Aware SZZ
(MA-SZZ) minimizes unnecessary inspection efforts by developers
regarding lines of code. MA-SZZ is an improvement on Annotation
Graph SZZ (AG-SZZ) as it ignores non-semantic lines (such as blank
or comment lines) and those concerning only format/indentation
changes. MA-SZZ further refines the handling of merge and revert
operations, which can lead to mislabeled changes. Consequently,
we used MA-SZZ in our study to identify bug-inducing commits.
Our study uses the recent pyszz package [85], which offers various
SZZ implementations. By using MA-SZZ, we label a changed block
in a commit as defective if it contains at least one defective line
identified; otherwise, they are considered clean.

To assess the accuracy of MA-SZZ, The same two authors inspect
379 defective blocks identified by MA-SZZ. These blocks are related
to the 379 fixed blocks evaluated previously. We followed the same
process used previously to evaluate the fixed blocks. First, the two
authors voted “True”, “False”, and “Unclear” for MA-SZZ results
by checking whether the defective block identified by MA-SZZ is
truly defective (i.e., induce a bug) and is related to the fixed block.
Then, they discussed any conflicts regarding the faulty blocks and
the instances voted “Unclear”. During the discussion, the authors
resolved 7 unclear instances and all the conflicts. The evaluation
process for identifying defective blocks resulted in 16 instances
classified as false positives and 363 as true positives. One reason
for such a false positive is that MA-SZZ could label two successive
changes on the same block argument as two buggy changes. In some
cases, the first change could be a true positive. We did not address
this specific type of noise because it necessitated the development
of an advanced tool designed to track such Terraform code changes
and refactoring operations, which fall outside the scope of our
current study. The precision of correctly identified buggy blocks
by MA-SZZ was 95.77%.

3.2.3 Block Metrics Extraction. In this step, we present the met-
rics we measure for a changed block. After applying MA-SZZ and
identifying the list of defective blocks in each project, we start the
analysis by iterating over all commits in a given project, consider-
ing all branches. To facilitate this, we employ Pydriller [95], which
is a repository analysis tool. To focus on meaningful changes and
exclude routine maintenance, we ignore merges and large commits
that change more than 100 files, as recommended by the McIntosh
et al. [67] study. This is because large commits can be the source of
noisy data. Then, for each commit, we identify the index positions
of the modified lines within each modified file. Subsequently, we uti-
lize the SonarQube HCL parser [6] to transform the Terraform file
into an Abstract Syntax Tree (AST) representation, which provides
a structured view of the code syntax. Finally, we extract the start
and end positions of the block identifiers. These positions serve as
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boundaries for at least one index of the changed lines, allowing us
to pinpoint the specific code of the changed blocks.

When identifying a block change, we measure 117 features. The
complete list of these features is available in an Appendix in our
replication package [18]. Such features have been collected from
previous work in IaC defect studies [38, 39, 78] and could be cate-
gorized into three groups:

• HCL Code Metrics: These are behavioural properties that
describe the structure of a Terraform block. Some of these
metrics are predefined and are part of the proposed IaC cat-
alogue [39], which provides general IaC metrics to measure
the maintainability of the IaC script. For example, to count
the number of nested blocks, we used a recursive method
that traverses the nodes of a changed block and checks their
types using AST. If a node is identified as “BlockTreeImpl”,
which indicates a nested block, the method increments the
count.

• Process Metrics: These metrics focus on the development
process rather than the code structure. To dive into the block
level, we re-implemented 21 metrics derived from previous
research [38] that used process metrics for Ansible defective
files. To enhance our analysis and gain deeper insight into
the developer experience and historical change of the blocks,
we expanded the process metrics with the types of developer
experience blocks as well as the history of change in different
block types (e.g., resource, variable, module).

• Delta Metrics: These metrics capture the amount of change
in a block between two successive changes. We measure the
deltas for each HCL code metric. These metrics have been
used in the context of traditional source code artifacts [27]
and were adopted in IaC by Dalla et al. [38] to enhance the
defect prediction performance.

These metrics are collected for each modified Terraform block
during every project commit and stored as tabular data in a file.

3.3 Model Construction
In this section, we explain the steps to construct a defect model that
can predict from a given set of metrics whether a block is defective
or clean.

3.3.1 Feature Engineering. As stated in previous studies [55, 96],
highly correlated metrics can negatively impact the interpretation
of the DP model. To mitigate the correlation between two metrics
(i.e., collinearity) and the correlation across more than two metrics
(i.e., multicollinearity), we use Spearman’s rank correlation, since
it does not assume any hypothesis on the normality of the metrics
[103]. To avoid manual selection after applying Spearman’s rank
correlation and avoid the biased decision, we use the AutoSpear-
man package [57] that relies on Spearman’s rank correlation and
Variance Inflation Factor (i.e., VIF analysis) to automatically select
one metric of a group of the highest correlated metrics that share
the minor correlation with other metrics that are not in the group.
We chose 0.7 as the Spearman correlation coefficient threshold,
which is used in defects prediction studies [55, 58]. Furthermore,
we set the VIF threshold at five, as used by Jiarpakdee et al. [56].

3.3.2 Model Construction. After selecting relevant features, for
each project, we constructed six machine learning models, which
are: Naive Bayes (NB) [106], Logistic Regression (LR) [36], Decision
Tree (DT) [32], Random Forest (RF) [51], ExtraTrees (ET) [45], and
Light Gradient Boosting Machine (LightGBM) [61]. These mod-
els have been widely used in software defect prediction studies
[58, 64, 100]. NB and LR are baseline learners for defect prediction
studies due to their speed, simplicity, and minimal data require-
ments. Additionally, we incorporate tree-based algorithms, known
for their performance. RF comprises several decision trees, each
constructed using random subsets of the dataset. On the other hand,
ET builds highly randomized decision trees using the entire dataset.
LightGBM, an optimized boosting algorithm, adopts a leaf-wise
algorithm with depth limitation to control the growth of its internal
decision trees. We utilized the implementation of these algorithms
provided by scikit-learn [7].

Our training data are intentionally left unbalanced, as balancing
techniques can bias the interpretation of DP models [46, 97]. To ac-
count for this imbalance, we configured all algorithms (except NB)
to assign equal weight to positive and negative instances during
training by setting the option class_weight = "balanced" [53].
Since DP is a binary classification task, we used a threshold to de-
termine whether a changed block is defective. We set the threshold
value to 0.5 for all our experiments as used by Bludau et al. [31].
If the measured probability of the model for a block surpasses the
threshold, the changed block is buggy.

3.3.3 Model Validation. We split the datasets into training and
testing subsets to validate the model’s performance. We scale the
training feature values within [0, 1]. Rahman et al. [83] have shown
that increasing training data in defect prediction improves model
performance, allowing models to capture historical patterns. Fur-
thermore, McIntosh et al. [67] underscored the importance of eval-
uating defect prediction models using a time-based methodology,
rather than relying on random-based validation, such as K-fold
cross-validation. This is because the classification of changes ex-
hibits a time-ordered pattern. McIntosh et al. [67] also suggested
a 6-month validation (i.e., long-term validation) to improve the
performance of the models by using a cache of changes. We adopt
long-term validation, using the recent six months of changed blocks
as the testing set, while the remaining data serves as the training
set. During the training phase, we employ TimeSeriesSplit [8]. This
technique partitions the training data into equal segments, ensur-
ing that in each iteration, all segments occurring before the one
being predicted are used for training, while the segment to be pre-
dicted becomes the test set. This approach prevents any form of
data leakage.

To assess the performance of the defect models, we employ a set
of measures because focusing solely on a single measure can have
adverse effects on others [71, 100]. These measures originate from
the four possible results in binary classification, where we catego-
rize instances into four groups: (1) True Positive (TP), which counts
the defective instances correctly classified as defective; (2) True
Negative (TN), which counts the non-defective instances classified
as non-defective; (3) False positive (FP) counts the non-defective
instances classified as defective; (4) False Negative (FN) counts the
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defective instances classified as non-defective. From the literature,
we select three widely used measures, which are:

• Matthews Correlation Coefficient (MCC): measures the cor-
relation between positive instances and predicted classes. It
produces a coefficient with the following interpretation: +1
represents a perfect prediction, 0 indicates that there is no
improvement over random guessing, and -1 signifies com-
plete discord between the prediction and the actual instances
[69, 94, 102]. MCC is defined as follows:

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
• G-mean: calculates the geometric mean between the recall

(the proportion of true positives to all actual positives) and
the complement of the False Positive Rate (FPR) [71, 89, 100].
The higher is G-mean, the better is the performance. G-mean
is defined as:

G-mean =
√︁

Recall × (1 − FPR)

where Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, FPR =

𝐹𝑃

𝐹𝑃 +𝑇𝑁 ,

• Area Under Curve (AUC): quantifies the area under the Re-
ceiver Operator Characteristic (ROC) curve. It provides a
value between 0 and 1, where 1 indicates perfect perfor-
mance; the higher the AUC, the better the performance [69].

3.4 The used statistical test
In our study, performing multiple statistical comparisons is needed
to (i) rank the different ML algorithms and (ii) rank the features
according to their importance. To perform multiple statistical com-
parisons, we use the Scott-Knott-ESD (SK-ESD) test elaborated by
Tantithamthavorn et al. [98]. SK-ESD extends the Scott-Knott test
with normality and effect size corrections as follows:

• Normality correction: SK-ESD applies logarithmic transfor-
mation 𝑦 = 𝑙𝑜𝑔(𝑥 + 1) to alleviate the skewness of the data.

• Effect size correction: SK-ESD clusters the models into sta-
tistically significant groups. SK-ESD uses Cohen’s 𝑑 [34] to
measure the effect size between different groups and merge
groups having negligible effect size, i.e., having 𝑑 < 0.2. The
SK-ESD allows the optimization of the likelihood of getting
falsely distinct models generated from random variation.

We use the implementation of Tantithamthavorn et al. [98] since
it was updated according to the recommendation of Herbold [50]

4 RESULTS
This section reports the results of our three research questions.

4.1 RQ1: Models Performance
Approach. The goal of RQ1 is to rank the different models’ per-
formance and identify the best ML model. Hence, we evaluate 6
widely-used ML classifiers namely, LightGBM, RF, ET, LR, DT, and
NB (cf. Section 3.3.2) in terms of MCC, G-mean, and AUC. In ad-
dition, we added two dummy approaches as baselines to the ML
algorithm to motivate the need for ML models to efficiently detect
the defective blocks. Firstly, we employ a straightforward method
that relies on the median churn size value (i.e., Dump) for each

project within the training dataset. During the testing, a block in-
stance is flagged as defective if its churn size value exceeds the
median value from the training data. Second, we incorporate an-
other model known as DummyClassifier, a Random Guess (RG)
model available in the scikit-learn library [9]. Finally, the differ-
ent scores of the MLs baselines are ranked using the SK-ESD test
(cf. Section 3.4).

Results. Table 2 shows the MCC, G-mean, and AUC scores for
the studied ML baselines with their SK-ESD ranks for each studied
project. In each project, we observe that most of the ML models
perform better than the Random Guess (RG) model since we reach
at least an MCC greater than 0 and an AUC higher than 0.5. This
same trend is observed for the Dump technique (i.e., churn size),
except for one project of the 19 studied. This finding motivates the
need for ML models that learn patterns from the data since dummy
baselines failed to accurately identify terraform defective blocks.
Furthermore, the results indicate that no ML algorithm dominates
consistently the other ML algorithms in all projects. Overall, we
observe that LightGBM and LR have a higher number of wins in
terms of MCC, G-mean, and ROC-AUC.

It is worth mentioning that the results show that the performance
of LightGBM might vary from project to project. We observe that
the MCC scores of LightGBM range from 0.036 to 0.697, and the
AUC scores also range from 0.52 to 0.887. In particular, we observe
that for some specific projects, while LightGBM achieves a consid-
erably low AUC of 0.5, other simpler models, such as LR, achieve
an acceptable AUC score higher than 0.7. An example of such
projects is the project zenml-io/mlstacks in which we found that LR
exceeded LightGBM, achieving an AUC score of 0.8 compared to
0.54 for LightGBM. This could be related to some characteristics of
these projects, which are relatively short-lived and have an age of
approximately 1.5 years (i.e., since 2022). Short-lived projects could
have instability in their development process, and such changed
blocks could be seen as noisy instances by the model, since they
do not meet the learned patterns. Therefore, LightGBM can overfit
noise, making it hard to generalize. A similar observation has been
made by Zeng et al. [104] in which they found that simple models
such as LR are beneficial and can outperform advanced techniques
such as deep learning. Our results suggest the same observation
for some projects previously mentioned in which LR can achieve
acceptable results with improved interpretability [104]. However, in
our experiments, we focus more on performance and motivate the
choice of LightGBM by the fact that it can have acceptable scores
on a wider range of projects (i.e., achieving the highest number of
wins in 𝑀𝐶𝐶 and 𝑅𝑂𝐶 −𝐴𝑈𝐶). LightGBM is considered also to be
the best-performing model compared to other baselines in terms of
AUC since it achieves an AUC score greater than 0.7 in 11 out of 19
studied projects compared to 9 out of 19 for RF, 7 out of 19 for ET,
7 out of 19 for DT, 6 out of 19 for LR and 3 out of 19 for NB. Since
Terraform scripts contain different block types, each representing
different infrastructure elements and behaviors, it could yield het-
erogeneous data. Thus, we speculate that LightGBM outperforms
other models due to (i) its ability to handle complex and nonlinear
relationships between the dependent and independent variables
and (ii) its robustness towards class imbalance due to the boosting
strategy [61].



MSR 2024, April 2024, Lisbon, Portugal Mahi Begoug, Moataz Chouchen, Ali Ouni, Eman Abdullah AlOmar, and Mohamed Wiem Mkaouer

Finally, it is worth mentioning that we observe that Random
Forest (RF) and Extra Trees (ET) have fewer wins (i.e., 2 and 3,
respectively in terms of MCC). Despite the known effectiveness of
RF models in traditional defect prediction, our study investigates,
to some extent, different domains since IaC syntax languages differ
from traditional language programming. In addition, we focus on
the changed blocks rather than the whole change (i.e., commit).
This aligns with Shepperd et al.’s findings [90], which emphasized
that no single defect prediction technique dominates universally.

The remaining experiments (RQ2 and RQ3) are performed by
using LightGBM as the default algorithm since LightGBM achieves
the best performance (i.e., rank 1) in terms of MCC in 6 out of the
19 projects, the best AUC in 6 projects, and the second best scores
in terms of G-mean that has the highest performance in 4 projects
as mentioned earlier.

RQ1 summary: The results of RQ1 show the need for ML algo-
rithms to predict the defects at the block level since they outperform
the dummy approaches. Furthermore, The results reveal that no
single ML model consistently outperforms all others. Meanwhile,
we observed that LightGBM tends to be the best-performing by
achieving the best MCC score on 7 occasions and having an AUC
higher than 0.7 in 11 out of 19 projects.

4.2 RQ2: Feature Importance
Approach. In this research question, we analyze the feature’s im-
portance with LightGBM to gain insights regarding the most crucial
features for IaC defective block prediction. As said in the RQ1 re-
sults, we use LightGBM as the default classifier since it provides the
best performance. Specifically, similar to prior works [84, 97], for
each project, we calculate the permutation importance of each fea-
ture [26] using the PermutationImportance [10] from scikit-learn.
Finally, we rank the features according to their obtained importance
scores using the SK-ESD test (cf. Section 3.4).

Results. Table 3 presents the top 3 features of each dataset with
their SK-ESD ranks. Figure 2 shows the ranking box plots for the
top 10 most important features. The results indicate that crucial
features may vary from project to project. This can be explained
by the fact that every project has its own practices and community.
To this end, we have the following observations:

Process metrics tend to be the most important features.
Figure 2 shows the median rank for each metric across 19 projects.
We observe the recent experience (Rexp) and the diffusion of the
lines added across the changed blocks (Dla) emerge as the 3-Top
features in all projects. Additionally, the count of block types that
have changed before, categorized by type (SimilarChange) tends
to be among the 3-Top features with a median rank lower than 7.
In particular, these two features fall into the process metric cate-
gory. This is consistent with the Majumder et al. [65] study, which
stressed the effectiveness of process metrics in defect prediction
studies. Furthermore, metrics associated with code additions con-
tribute to model performance, as confirmed by Zeng et al. [104],
who identified that logistic regression with the number of lines
added as features could outperform deep learning.

Link to code metrics projects. We also noticed that HCL code
metrics, such as TmpExpr, DebugFunc, and ImplDepData, achieve
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Figure 2: Box Plot of Top-20 Features by Median Rank
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Figure 3: Top-10 Feature Importance Score of cattle-
ops/terraform-aws-gitlab-runner project

the best ranks (i.e., rank equals to 1) in 3 projects. TmpExpr rep-
resents the number of template expressions within the block that
developers use to perform a dynamic load of values. For example,
in the cattle-ops/terraform-aws-gitlab-runner project, the number
of template expressions (referred to as TmpExpr) is the most signifi-
cant feature, with a rank of 1. Figure 3 presents the top 10 features
specific to that project based on the feature permutation technique.
The TmpExpr code metric showed a notably high importance score.
This observation aligns with the results of Opdebeeck et al. [74] in
which they demonstrated that these template expressions in the
IaC realm correlate with infrastructure outages when expressions
are close to nullable values.

RQ2 summary: The results of RQ2 reveal that recent experience,
diffusion of added lines across changed blocks, and frequently
changed block type are the Top-3 most important features. The RQ2
results suggest that process metrics tend to improve the model’s
performance in our study.
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Table 2: The achieved MCC, G-mean, and ROC-AUC scores with the rank (between parenthesis) using the SK-ESD test across 19
projects.

Project
MCC G-mean ROC-AUC

LightGBM RF ET DT LR NB Dumb RG LightGBM RF ET DT LR NB Dumb RG LightGBM RF ET DT LR NB Dumb RG

kubernetes-sigs/kubespray 0.17 (6) 0.217 (4) 0.186 (5) 0.268 (3) 0.351 (1) 0.154 (7) 0.269 (2) 0.039 (8) 0.632 (4) 0.582 (5) 0.533 (6) 0.701 (2) 0.735 (1) 0.423 (7) 0.641 (3) 0.528 (6) 0.546 (7) 0.686 (3) 0.632 (5) 0.711 (2) 0.759 (1) 0.589 (6) 0.663 (4) 0.5 (8)

oracle-terraform-modules/terraform-oci-oke 0.18 (5) 0.251 (2) 0.243 (3) 0.25 (2) 0.229 (4) 0.315 (1) 0.164 (6) -0.005 (7) 0.663 (5) 0.687 (3) 0.674 (4) 0.71 (2) 0.652 (6) 0.771 (1) 0.52 (7) 0.469 (8) 0.739 (5) 0.767 (4) 0.805 (3) 0.712 (6) 0.847 (1) 0.82 (2) 0.419 (8) 0.5 (7)

chanzuckerberg/cztack 0.172 (2) 0.117 (4) 0.104 (4) 0.172 (2) 0.153 (3) -0.147 (6) 0.243 (1) -0.036 (5) 0.501 (3) 0.459 (5) 0.389 (6) 0.491 (4) 0.535 (1) 0.315 (7) 0.527 (2) 0.469 (5) 0.653 (2) 0.697 (1) 0.64 (3) 0.536 (5) 0.599 (4) 0.456 (8) 0.526 (6) 0.5 (7)

zenml-io/mlstacks 0.036 (5) 0.017 (6) 0.236 (2) -0.051 (8) 0.321 (1) 0.098 (4) 0.117 (3) -0.016 (7) 0.447 (4) 0.443 (4) 0.673 (2) 0.459 (4) 0.72 (1) 0.279 (6) 0.327 (5) 0.484 (3) 0.544 (6) 0.568 (5) 0.731 (3) 0.495 (8) 0.798 (1) 0.746 (2) 0.581 (4) 0.5 (7)

cloudfoundry/bosh-bootloader 0.186 (2) 0.18 (3) 0.009 (6) 0.299 (1) 0.006 (6) 0.02 (5) 0.088 (4) -0.008 (7) 0.514 (2) 0.512 (3) 0.434 (7) 0.629 (1) 0.5 (5) 0.462 (6) 0.504 (4) 0.476 (6) 0.704 (1) 0.543 (3) 0.372 (7) 0.676 (2) 0.349 (8) 0.496 (5) 0.495 (6) 0.5 (4)

cattle-ops/terraform-aws-gitlab-runner 0.226 (2) 0.341 (1) 0.185 (4) -0.02 (6) 0.195 (3) -0.038 (7) 0.061 (5) -0.017 (6) 0.676 (4) 0.866 (1) 0.753 (2) 0.453 (5) 0.736 (3) 0.395 (6) 0.349 (7) 0.421 (5) 0.887 (2) 0.923 (1) 0.79 (3) 0.582 (6) 0.639 (4) 0.354 (8) 0.617 (5) 0.5 (7)

ministryofjustice/cloud-platform-infrastructure 0.228 (1) 0.112 (3) 0.129 (2) 0.051 (5) 0.092 (4) 0.036 (6) 0.032 (7) -0.021 (8) 0.473 (4) 0.496 (3) 0.616 (1) 0.299 (7) 0.594 (2) 0.387 (5) 0.38 (6) 0.469 (4) 0.77 (1) 0.738 (2) 0.585 (5) 0.566 (7) 0.66 (3) 0.58 (6) 0.612 (4) 0.5 (8)

Azure/az-hop 0.207 (2) 0.257 (1) 0.253 (1) 0.133 (4) 0.174 (3) -0.039 (7) 0.113 (5) -0.012 (6) 0.73 (3) 0.809 (1) 0.709 (4) 0.693 (4) 0.776 (2) 0.298 (6) 0.695 (4) 0.47 (5) 0.803 (2) 0.89 (1) 0.799 (2) 0.786 (3) 0.771 (4) 0.466 (7) 0.575 (5) 0.5 (6)

magma/magma 0.237 (1) 0.206 (2) 0.19 (3) 0.012 (6) 0.106 (4) -0.013 (7) 0.056 (5) -0.049 (8) 0.657 (1) 0.62 (2) 0.633 (2) 0.465 (4) 0.583 (3) 0.355 (5) 0.452 (4) 0.445 (4) 0.665 (2) 0.758 (1) 0.64 (3) 0.513 (4) 0.667 (2) 0.492 (6) 0.519 (4) 0.5 (5)

GoogleCloudPlatform/cloud-foundation-fabric 0.153 (3) 0.178 (2) 0.193 (1) 0.115 (4) 0.101 (7) 0.107 (6) 0.113 (5) 0.002 (8) 0.608 (3) 0.632 (2) 0.655 (1) 0.592 (4) 0.578 (5) 0.49 (8) 0.561 (6) 0.501 (7) 0.684 (3) 0.692 (2) 0.7 (1) 0.63 (5) 0.627 (6) 0.637 (4) 0.593 (7) 0.5 (8)

SUSE/ha-sap-terraform-deployments 0.089 (2) 0.061 (4) 0.062 (4) 0.048 (5) 0.111 (1) -0.003 (6) 0.067 (3) -0.006 (6) 0.743 (2) 0.661 (3) 0.644 (5) 0.645 (5) 0.78 (1) 0.429 (6) 0.65 (4) 0.427 (6) 0.801 (1) 0.717 (2) 0.719 (2) 0.562 (6) 0.695 (3) 0.602 (4) 0.588 (5) 0.5 (7)

Azure/Avere 0.299 (1) 0.243 (2) 0.151 (3) 0.246 (2) 0.093 (4) -0.072 (6) -0.0 (5) 0.01 (5) 0.645 (1) 0.545 (4) 0.573 (3) 0.639 (2) 0.473 (6) 0.25 (7) 0.0 (8) 0.505 (5) 0.716 (1) 0.637 (4) 0.658 (3) 0.712 (2) 0.55 (5) 0.543 (6) 0.466 (8) 0.5 (7)

CDCgov/prime-simplereport 0.697 (1) 0.27 (2) 0.077 (3) 0.063 (4) 0.008 (7) 0.04 (6) 0.058 (5) -0.037 (8) 0.813 (1) 0.64 (2) 0.615 (2) 0.522 (4) 0.488 (5) 0.235 (7) 0.585 (3) 0.39 (6) 0.792 (1) 0.683 (3) 0.66 (4) 0.58 (5) 0.442 (8) 0.56 (6) 0.789 (2) 0.5 (7)

Worklytics/psoxy 0.183 (1) 0.181 (1) 0.092 (5) 0.103 (3) 0.109 (2) -0.015 (7) 0.095 (4) 0.01 (6) 0.589 (1) 0.573 (2) 0.559 (3) 0.465 (6) 0.572 (2) 0.222 (7) 0.479 (5) 0.506 (4) 0.678 (1) 0.659 (2) 0.624 (5) 0.592 (6) 0.63 (3) 0.626 (4) 0.56 (7) 0.5 (8)

Azure/sap-automation 0.192 (2) 0.155 (3) 0.134 (4) 0.201 (1) 0.126 (5) -0.001 (7) 0.08 (6) -0.007 (7) 0.596 (3) 0.575 (4) 0.571 (5) 0.65 (1) 0.612 (2) 0.408 (7) 0.489 (6) 0.483 (6) 0.653 (6) 0.681 (4) 0.661 (5) 0.718 (1) 0.71 (2) 0.548 (7) 0.683 (3) 0.5 (8)

aws-observability/terraform-aws-observability-accelerator 0.046 (5) 0.162 (2) 0.088 (4) 0.174 (2) 0.32 (1) 0.146 (3) 0.04 (5) -0.019 (6) 0.507 (5) 0.541 (3) 0.524 (4) 0.582 (2) 0.658 (1) 0.525 (4) 0.376 (7) 0.488 (6) 0.52 (7) 0.597 (3) 0.541 (5) 0.621 (2) 0.632 (1) 0.577 (4) 0.524 (6) 0.5 (8)

kube-hetzner/terraform-hcloud-kube-hetzner 0.168 (4) 0.188 (3) 0.209 (2) 0.214 (1) 0.191 (3) 0.082 (5) 0.048 (6) 0.002 (7) 0.598 (5) 0.628 (4) 0.674 (2) 0.682 (1) 0.663 (3) 0.264 (8) 0.342 (7) 0.501 (6) 0.708 (2) 0.707 (2) 0.729 (1) 0.656 (4) 0.684 (3) 0.705 (2) 0.522 (5) 0.5 (6)

PaloAltoNetworks/terraform-azurerm-vmseries-modules 0.182 (2) 0.188 (2) 0.007 (6) 0.221 (1) 0.165 (3) 0.03 (5) 0.148 (4) 0.026 (5) 0.695 (2) 0.709 (2) 0.419 (6) 0.784 (1) 0.679 (3) 0.526 (5) 0.627 (4) 0.527 (5) 0.776 (2) 0.717 (3) 0.51 (7) 0.793 (1) 0.629 (4) 0.547 (6) 0.623 (5) 0.5 (7)

cookpad/terraform-aws-eks 0.37 (1) 0.33 (2) 0.22 (3) 0.317 (2) 0.372 (1) 0.114 (4) 0.091 (5) 0.028 (6) 0.817 (2) 0.759 (4) 0.659 (5) 0.788 (3) 0.842 (1) 0.408 (7) 0.338 (8) 0.524 (6) 0.819 (2) 0.821 (2) 0.819 (2) 0.804 (3) 0.856 (1) 0.473 (5) 0.465 (6) 0.5 (4)

Number of wins 6 3 2 4 5 1 1 0 4 2 2 4 6 1 0 0 6 3 2 2 5 0 0 0

Results in the form of 𝑀𝑒𝑎𝑛 (𝑅𝑎𝑛𝑘 ) where 𝑀𝑒𝑎𝑛 is the mean value of performance metric 𝑖 for algorithm 𝑗 across all the runs and 𝑅𝑎𝑛𝑘 is the SK-ESD rank. The lower the rank the better the performance.

Algorithms with 𝑅𝑎𝑛𝑘 1 are in bold.

Fold 1  Fold 2  Fold 3 

Old Data

Recent Data

Test Data
Iteration 1

Iteration 2

Figure 4: An overview of training models using both old and
recent data

4.3 RQ3: Model Stability
Approach. To investigate potential concept drift, we evaluate the
predictive performance of our approach over time using the best
model from RQ1 (LightGBM). For each dataset, we divide it into
three folds, arranged chronologically by the time of the commit
(change). We selected three folds as the minimum number of splits
to ensure that each fold contains defective blocks, as the absence
of defects can impact performance measurement.

In the first iteration, we train LightGBM using the first fold (i) as
the training set, representing older data, and test it on the last fold
(i+2). In the second iteration, fold i+1 is used for training, represent-
ing recent data, and fold i+2 becomes the test set, as illustrated in
Figure 4. We aim to identify the recurring concepts that are valid
for a specific (old) fold and reappear in later folds, following prior
studies [87, 93]. We repeat each iteration 11 times to account for
the stochastic nature of LightGBM. Subsequently, we apply the
SK-ESD Test to determine which iteration drifts. We identify a case
of concept drift where the model’s performance using the old data
is significantly different from the model’s performance when recent
data are used.

Results. Table 4 reports the ranks and corresponding model perfor-
mance of LightGBM models trained on two time intervals, including
old and recent data, across 19 projects. In 18 out of 19 cases, we
observe that the performance using old and new data differs sig-
nificantly, since both scenarios have different ranks for the MCC,
G-mean, and ROC-AUC scores. Our observations reveal that train-
ing on recent data outperforms training on older data, with 15 wins
in MCC, 13 in G-mean, and 14 in AUC. An example of such a case
is the project aws-observability/terraform-aws-observability-accele
rator, in which we obtained a lower MCC in the old data and a
slight improvement in recent training. Upon analyzing the histor-
ical change of the project, we observed that on 25 October 2022,
the contributors made an update to the project, which included an
update to Terraform version 1.3, involving modifications to 24 files
[21]. Furthermore, the Terraform 1.3 update introduced new syntax
elements to module blocks, including attributes with defaults and
enhancements related to move blocks [21]. These changes aimed
to enhance the extensibility and maintainability of Terraform mod-
ules by breaking the change in syntax. However, this alteration
in the HCL syntax can introduce variability and instability in the
change patterns associated with the blocks, making it challenging
for models to identify consistent patterns.

Additionally, we have noticed that in some cases, training de-
fect models on older or recent data can give better performance
than using the entire dataset, especially when considering the re-
sults from RQ1. An example of such a case can be observed for
zenmal-io/mlstacks and SUSE/ha-sap-terraform-deployments
displayed improved performance with MCC values of 0.375 and
0.213, respectively, compared to training on the entire dataset,
where MCC values were 0.036 and 0.089, respectively.

RQ3 summary: Our analysis indicates that concept drift is com-
monly observed for Terraform defect prediction. Training on more
recent data is often better than using old data.
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Table 3: The Top-3 Important features of each studied project.

Project Feature SK-ESD rank

kubernetes-sigs/kubespray
DLa 1
La 2
Exp 3

oracle-terraform-modules/terraform-oci-oke
ImplDepVars_delta 1
Owner 2
NetBlc 2

chanzuckerberg/cztack
La 1
isLocals 2
TmpExpr 3

zenml-io/mlstacks
Conds_delta 1
NLd 2
RecentAge 3

cloudfoundry/bosh-bootloader
DLa 1
Kexp 2
ImplDepResr 3

cattle-ops/terraform-aws-gitlab-runner
TmpExpr 1
SplatExpr_delta 2
DLa 3

ministryofjustice/cloud-platform-infrastructure
Owner 1
ElemObjs_delta 2
DLa 2

Azure/az-hop
Owner 1
ImplDepData 1
EditDistance 1

magma/magma
Bexp 1
TextEntropy 2
DLa 3

GoogleCloudPlatform/cloud-foundation-fabric
DebugFunc 1
Exp 1
ElemObjs_delta 2

SUSE/ha-sap-terraform-deployments
Bexp 1
EditDistance 2
IndexAccess 3

Azure/Avere
isAddDefault 1
Rexp 2
Kexp 3

CDCgov/prime-simplereport
Rexp 1
NLd 2
DLa 2

Worklytics/psoxy
EditDistance 1
isModule 2
SplatExpr_delta 3

Azure/sap-automation
LogiOpers_delta 1
DLd 2
Rexp 2

aws-observability/terraform-aws-observability-accelerator
EditDistance 1
Rexp 2
NLd 3

kube-hetzner/terraform-hcloud-kube-hetzner
La 1
isLocals 1
TextEntropy 2

PaloAltoNetworks/terraform-azurerm-vmseries-modules
DLa 1
isAddValue 2
CompOpers_delta 3

cookpad/terraform-aws-eks
FnCall_delta 1
TextEntropy 2
ElemObjs_delta 3

5 DISCUSSION
In this section, we discuss how the IaC community, including prac-
titioners, tool builders, and researchers, can take advantage of our
findings.

5.1 Implications for the research community
Prominent block-level Terraform defect prediction models. In RQ1,
we found that we can achieve an acceptable Terraform block-level
defect prediction using LightGBM. These findings suggest the need
to further investigate other techniques to improve the performance
of the proposed models. By doing so, developers can gain access
to more accurate tools that can effectively help them determine
whether a modified code block may contain defects.
Additional tool support for block-level defect prediction. In RQ3, we
saw that concept drift is commonly observed in the studied projects.
Therefore, it is crucial to mitigate concept drift by building tools
that serve to automatically detect and mitigate concept drift. These
tools can take into account major Terraform ecosystem changes
and provide recommendations to developers regarding whether or

Table 4: The achieved MCC, G-mean, and ROC-AUC scores
with the rank (between parenthesis) using SK-ESD test when
varying the training time across 19 projects.

Project MCC G-mean ROC-AUC
Old Recent Old Recent Old Recent

kubernetes-sigs/kubespray 0.028 (2) 0.151 (1) 0.374 (2) 0.549 (1) 0.55 (2) 0.618 (1)
oracle-terraform-modules/terraform-oci-oke 0.111 (2) 0.148 (1) 0.359 (2) 0.555 (1) 0.618 (1) 0.589 (2)
chanzuckerberg/cztack 0.145 (1) 0.146 (1) 0.662 (1) 0.645 (2) 0.712 (2) 0.75 (1)
zenml-io/mlstacks -0.022 (2) 0.375 (1) 0.339 (2) 0.649 (1) 0.46 (2) 0.697 (1)
cloudfoundry/bosh-bootloader 0.101 (2) 0.154 (1) 0.552 (1) 0.506 (2) 0.613 (2) 0.653 (1)
cattle-ops/terraform-aws-gitlab-runner 0.047 (2) 0.134 (1) 0.494 (2) 0.534 (1) 0.611 (2) 0.651 (1)
ministryofjustice/cloud-platform-infrastructure 0.072 (1) 0.047 (2) 0.496 (1) 0.214 (2) 0.59 (1) 0.504 (2)
Azure/az-hop 0.066 (1) 0.032 (2) 0.305 (1) 0.272 (1) 0.533 (2) 0.582 (1)
magma/magma 0.041 (1) 0.012 (2) 0.483 (1) 0.359 (2) 0.686 (1) 0.616 (2)
GoogleCloudPlatform/cloud-foundation-fabric 0.054 (2) 0.081 (1) 0.513 (1) 0.514 (1) 0.554 (2) 0.577 (1)
SUSE/ha-sap-terraform-deployments 0.043 (2) 0.213 (1) 0.331 (2) 0.659 (1) 0.665 (2) 0.736 (1)
Azure/Avere 0.089 (1) 0.1 (1) 0.498 (1) 0.43 (2) 0.555 (2) 0.714 (1)
CDCgov/prime-simplereport 0.093 (2) 0.232 (1) 0.312 (2) 0.482 (1) 0.678 (2) 0.775 (1)
Worklytics/psoxy 0.059 (2) 0.221 (1) 0.457 (2) 0.642 (1) 0.536 (2) 0.699 (1)
Azure/sap-automation 0.069 (2) 0.167 (1) 0.524 (2) 0.584 (1) 0.669 (1) 0.639 (2)
aws-observability/terraform-aws-observability-accelerator -0.115 (2) 0.08 (1) 0.299 (2) 0.539 (1) 0.437 (2) 0.598 (1)
kube-hetzner/terraform-hcloud-kube-hetzner 0.136 (2) 0.2 (1) 0.534 (2) 0.606 (1) 0.603 (2) 0.702 (1)
PaloAltoNetworks/terraform-azurerm-vmseries-modules 0.025 (1) -0.011 (2) 0.416 (1) 0.354 (2) 0.683 (1) 0.57 (2)
cookpad/terraform-aws-eks 0.065 (2) 0.133 (1) 0.501 (2) 0.596 (1) 0.695 (2) 0.709 (1)

Number of wins 6 15 8 13 5 14

Results in the form of 𝑀𝑒𝑎𝑛 (𝑅𝑎𝑛𝑘 ) where 𝑀𝑒𝑎𝑛 is the mean value of performance metric 𝑖 for approach 𝑗 across all
the runs and 𝑅𝑎𝑛𝑘 is the SK-ESD rank. The lower the rank the better the performance.
Approaches with 𝑅𝑎𝑛𝑘 1 are in bold.

not model retraining is necessary and add more developers’ trust
in our models.

5.2 Implications for practitioners
Maintain terraform blocks. Our RQ2 findings highlighted the im-
portance of the added line ratio within a block, as this can directly
impact the presence of defects. Developers should be aware of the
number of lines added relative to the IaC file, as excessive additions
can result in increased complexity and difficulties in maintenance.
We recommend carefully using variables and local variables to en-
capsulate information without altering the behaviour of the blocks
(i.e., refactoring way), such as resources or modules. This approach
can significantly aid in the maintenance of such sized blocks. Fur-
thermore, our analysis in RQ2 highlights a trend in which recent
experience tends to improve prediction performance. This suggests
that Terraform practitioners who refrain from frequent modifica-
tions in recent days or months are more likely to introduce defects,
potentially losing sight of the recent context of the block.

Mitigate the false positives in practice. From RQ1, some models can
have low performance since they predict many false positive blocks.
Having more false positives might lead to a higher workload for
developers, since they need to investigate more blocks in practice.
However, it is worth noting that the ML models are still useful,
since they are discovering more defects despite the presence of
false positives. Generally, The cost of not finding a defect (false
negative) can be considerably higher than the developer’s code
inspection of a clean artefact [91]. In practice, developers can reduce
the false positives by increasing the prediction probability threshold
to reduce the number of blocks predicted as defective, which in some
cases can lead to better performance. An example of such a case is
observed for LR in the project oracle-terraform-modules/terraform-
oci-oke. We observed that changing the threshold value of 0.5 with
0.71 can significantly improve MCC and G-mean of 0.23 and 0.65
(cf. Table 2), respectively, to 0.43, and 0.87 using 0.71 as a threshold.
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Develop an online Bot. From RQ1, Our approach achieves an AUC of
more than 0.7 in 11 projects. In these cases, the predictions of our
approach are reliable [52]. Like the other traditional software defect
prediction tools (e.g., JITBot [62]), our approach can be turned into
an integrated bot that can be merged as a plugin with modern
software development platforms (e.g., GitLab, GitHub) or as a bot in
the CI/CD pipelines. It could help developers automatically identify
the potentially defective blocks in the committed Terraform files.

5.3 Implications for tool builders
Stability of Terraform Environments. Our investigation, particularly
in response to RQ3, shed light on the stability of the Terraform
ecosystem. We have identified instances of concept drift in studied
projects, indicating that patterns derived from altered code blocks
may lose their validity over time. We believe this phenomenon could
also be related to the frequent modifications made to the HCL syn-
tax as well as some critical components of Terraform (i.e., Providers).
For example, in February 2022, the terraform-provider-aws team
introduced a major release, v4.0.0, which included several break-
ing changes to resource and data declarations [22]. Those changes
include, for example, the aws_s3_bucket_object resource which
was deprecated, leading to infrastructure disruptions when devel-
opers attempt to store data using this resource [16]. This example
aligns with the observations made in the Firefly survey [20], where
they highlighted that practitioners face challenges associated with
the instability of IaC tools. Hence, we recommend that tool builder
be more aware of the side effects of their breaking changes on
the stability of the Terraform ecosystem by following appropriate
deprecation and documentation guidelines.

6 THREATS TO VALIDITY
Threats to construct validity. could be related to the threats that
could create errors in our study. During the data collection, it could
be that some repositories are not relevant. To mitigate that, we
used seven criteria to identify repositories with sufficient informa-
tion on the development process, as well as the dynamic practice
of IaC. To identify the bug-fixing commits, we rely on analyzing
commit messages to identify the fixing commits. This technique
may lead to potential bias. To address this challenge, we employed
a methodology akin to that of Rahman et al. [78], which involved
analyzing commit messages and emphasizing the message head-
ers. This method could provide information on the purpose of the
commit. To discern the purpose of the commit from the message,
we selected keywords from previous studies that correlate with
bug-fixing commits [105]. Additionally, identifying bug-inducing
commits poses another potential challenge when using the SZZ
algorithm that could produce faulty labels. To mitigate this issue,
we opt for the recommended variant of SZZ, namely MA-SZZ, as
suggested by previous studies [37, 41], which has been shown to
decrease mislabeling instances. Another potential factor could be
related to verification latency [33], which appears when there is
a delay between when a bug is induced and when it is detected
by MA-SZZ. Since our primary goal is to demonstrate the ability
to predict defects at the block level, we did not take verification
latency into account during this study. We investigate this issue
in a future study where we will be focusing more on this crucial

concept before moving to the production side. Furthermore, there
may be an imprecise computation of the metrics for the blocks. To
address this issue in our implementation, we employ a test unit to
ensure the accuracy of the metric measurements.
Threats to internal validity. could be related to the factors that were
not considered and could impact the variables under investigation.
In our experiments, we used a mixture of product, process, and
delta metrics as suggested with a similar study for predicting faulty
methods [77]. For all projects, we did not study the metrics of
the subset (e.g., process versus code metrics) that could affect the
classification. We tried one dataset with only product metrics and
observed that classifiers could dramatically lose their performance.
Furthermore, such metrics in our study can be highly correlated,
which may further affect the interpretability of our models. We
tried AutoSpearman [57] as a feature selection technique based on
correlation and redundancy analysis to mitigate that. Furthermore,
our datasets are imbalanced, which could affect the performance of
the models. We also tested the SMOTE as a balancing technique for
two projects. However, we also observed that the SMOTE could neg-
atively influence the model’s performance. Future related studies
should carefully address aspects such as feature selection and class-
balancing techniques, which are outside the scope of the current
study.
Threats to external validity. Our study investigated 19 open-source
Terraform-based projects, which may not be generalized to all
Terraform-based projects. To mitigate that, we study relevant, widely-
used projects from different GitHub organizations to minimize po-
tential bias in our findings. However, replication of our study using
more projects could provide valuable insights.

7 CONCLUSION
This paper investigated defect prediction at the Just-In-Time block
level in Terraform files, a widely utilized Infrastructure-as-Code
(IaC) provisioning tool. Our experiments were carried out on 19
Terraform-based open-source projects gathered from GitHub, using
six ML algorithms to learn and test defective blocks over the last six
months. In summary, the study results demonstrate the capability of
ML algorithms to predict defects at the block level, with LightGBM
achieving an average MCC of 0.21 and an AUC score of 0.71. In
particular, the relative added lines, recent developer experience,
and frequently changed block types were identified as the top three
features with the lowest median rank. Our findings also revealed
that defect prediction models become less effective over time, losing
their ability to predict the nature of blocks.

For future work, we aim to enhance our models’ performance
by considering other pertinent aspects and expanding our experi-
ments to encompass a more extensive range of projects. This ini-
tiative seeks to provide valuable insights on defective blocks to
the IaC research community and practitioners. Moreover, the re-
sults suggest that interpretable models like logistic regression can
reach acceptable performance, we aim to investigate further the
trade-off between the different ML algorithms’ performance and
interpretability. In addition, we plan to deploy our models online
and collect feedback from IaC practitioners.
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