
An Exploratory Study on Refactoring Documentation in Issues
Handling

Eman Abdullah AlOmar
Rochester Institute of Technology

Rochester, New York, USA
eman.alomar@mail.rit.edu

Anthony Peruma
Rochester Institute of Technology

Rochester, New York, USA
axp6201@rit.edu

Mohamed Wiem Mkaouer
Rochester Institute of Technology

Rochester, New York, USA
mwmvse@rit.edu

Christian D. Newman
Rochester Institute of Technology

Rochester, New York, USA
cnewman@se.rit.edu

Ali Ouni
ETS Montreal, University of Quebec

Montreal, Quebec, Canada
ali.ouni@etsmtl.ca

ABSTRACT
Understanding the practice of refactoring documentation is of para-
mount importance in academia and industry. Issue tracking systems
are used by most software projects enabling developers, quality
assurance, managers, and users to submit feature requests and other
tasks such as bug fixing and code review. Although recent studies
explored how to document refactoring in commit messages, little
is known about how developers describe their refactoring needs
in issues. In this study, we aim at exploring developer-reported
refactoring changes in issues to better understand what developers
consider to be problematic in their code and how they handle it.
Our approach relies on text mining 45,477 refactoring-related issues
and identifying refactoring patterns from a diverse corpus of 77
Java projects by investigating issues associated with 15,833 refac-
toring operations and developers’ explicit refactoring intention.
Our results show that (1) developers mostly use move refactoring
related terms/phrases to target refactoring-related issues; and (2)
developers tend to explicitly mention the improvement of specific
quality attributes and focus on duplicate code removal. We envi-
sion our findings enabling tool builders to support developers with
automated documentation of refactoring changes in issues.

CCS CONCEPTS
• Software Engineering→ Software Quality; Refactoring.

KEYWORDS
Refactoring documentation, issues, software quality, mining soft-
ware repositories

1 INTRODUCTION
Code refactoring is a disciplined software engineering practice that
is known as “the process of changing a software system in such a
way that it does not alter the external behavior of the code yet im-
proves its internal structure” [4, 17]. Refactoring is commonly used
in different development and maintenance tasks [8]. It supports
developers in revolving submitted issues such as feature requests
[24] or bug reports [15]. Issue tracking systems are used by most
contemporary software projects enabling developers, quality as-
surance, managers, and users to submit feature or enhancement
requests, as well as other tasks such as bug fixing and code review.

Previous studies have focused on recommending refactorings
through the detection of refactoring opportunities, either by iden-
tifying code anti-patterns that need correction [13, 19, 25], or by
optimizing code quality metrics [10, 21, 30]. Yet, recent studies have
shown that there is a gap between automated refactoring tools, and
what developers consider to a need-to-refactor situation in code
[7, 14, 16]. To bridge this gap, it is important to understand what
triggers developers to refactor their code, and what do developers
care about when it comes to code improvement. Such informa-
tion provides insights, to software practitioners and researchers,
about the developer’s perception of refactoring. This can question
whether developers do care about structural metrics and code smells
when refactoring their code, or if there are other factors that are of
direct influence on these non-functional changes.

In this paper, we focus on investigating issues that are written to
express a need for refactoring. We extract patterns differentiating
refactoring issues. These patterns represent what developers con-
sider to be worth refactoring. We are also interested in the solutions,
i.e., refactoring operations, being proposed as correction measures.
Our investigation is driven by answering the following research
questions:

• RQ1:What textual patterns do developers use to describe
their refactoring needs in issues? This RQ explores the
existence of refactoring documentation in issues contain-
ing refactorings. This RQ aims to identify developers’ com-
mon phrases when describing their refactoring problem/chal-
lenge.

• RQ2: What are the quality attributes developers care
about when documenting in issues? In this RQ, we in-
vestigate whether developers explicitly indicate the purpose
of their refactoring activity applied in issues, e.g., improving
structural metrics of fixing code smells.

The results of this exploratory study strengthen our understand-
ing of what circumstances cause the need for refactorings. Using
the evolution history of 77 open-source projects exhibiting a total
of 45,477 refactoring commits with issues, our study reveals that de-
velopers are mainly driven by reducing complexity and increasing
comprehension and performance. While various studies associate
refactoring tightly with fixing code smells, the only anti-pattern
that was highlighted is duplicate code. Furthermore, various studies
have shown that the rename category is the most frequent in terms
of refactoring operations (e.g., rename method, rename attribute,

ar
X

iv
:2

20
3.

10
22

1v
1 

 [
cs

.S
E

] 
 1

9 
M

ar
 2

02
2



MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA AlOmar et al., Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian D. Newman, and Ali Ouni

etc.) [23, 27], but our study reveals that developers tend also to
discuss more complex refactorings, including refactorings dealing
with extract and move code fragments, due to their impact on the
design and code semantics preservation. We have also prepared a
replication package of issues and their corresponding fixes (refac-
torings), to support the reproducibility and extension of our work
[1].

2 STUDY DESIGN

Table 1: Dataset overview of refactoring-related issues.

Item Count

Refactoring commits with issues 45,477
Refactoring commits with issues having keyword ‘refactor*’ in title 835
Refactoring operations associated with issues 15,833

Issue Status
Item Count

Closed 603
In progress 8
Open 28
Resolved 196

Issue Resolution
Item Count

Done 4
Fixed 780
Implemented 8
Resolved 4
Won’t fix 3

Issue Types
Item Count

Bug 95
Improvement 390
New Feature 2
Story 1
Sub-task 71
Task 274
Test 2

Figure 1 depicts a general overview of our experimental setup. In
the following subsections, we elaborate on the activities involved
in the process. We provide the dataset that we generate available
in our replication package [1].

2.1 Source Dataset
Our study utilizes the SmartSHARK MongoDB Release 2.1 dataset
[34]. This dataset contains a wide range of information for 77 open-
source Java projects, such as commit history, issues, refactorings,
code metrics, mailing lists, and continuous integration data, among
others. All 77 Java projects are part of the Apache ecosystem and
utilize GitHub as their version control repository and JIRA for
issue tracking. Furthermore, SmartSHARK utilizes RefDiff [32] and
RefactoringMiner [37] to mine refactoring operations. Finally, the
SmartSHARK dataset schema provides the necessary relationship
attributes between data collections to join two or more related
collection types.

2.2 Refactoring Documentation Detection
To identify refactoring documentation patterns in issues, we per-
form a series of manual and automated activities, as follows:
Step #1: Issues associated with a refactoring activity. As our
study focuses on issues and refactorings, our analysis is limited to
issues where one or more refactoring operations were performed
as part of the issue resolution. Hence, we first extracted all different
refactorings from the source dataset. Next, we identify all commits
containing the refactoring operations. Finally, we extracted issues
that was addressed using the identified commits.

Table 2: List of refactoring documentation in issues (‘*’
captures the extension of the keyword) .

Patterns

Add* Chang* Chang* the name
Clean* up code Cleanup Code clean*
Code optimization Creat* Extend*
Extract* Fix* Fix* code style
Improv* Improv* code quality Inlin*
Introduc* Merg* Mov*
Pull* up Push* down Repackag*
Redesign* Reduc* Refactor*
Refin* Remov* Renam*
Reorganiz* Replac* Restructur*
Rewrit* Simplify* code Split*

Step #2: Issues associatedwith developer intention about refac-
toring. To ensure that the selected issues are about refactoring, we
focused on a subset of 835 issues that reported developers’ inten-
tion about the application of refactoring (i.e., having the keyword
‘refactor’). The choice of ‘refactor’, besides being used by all related
studies, is intuitively the first term to identify ideal refactoring-
related issues [2, 5, 18, 22]. Finally, to reduce the occurrence of false
positives, we limited our analysis to only the occurrence of the term
‘refactor’ in the title of the issue as the title is a concise description
of the problem [28, 29].
Step #3: Annotation of issues.When creating issues, developers
use natural language to describe the issues. Hence, given the di-
verse nature of developers describing the problem, an automated
approach to analyzing the issue text is not feasible. Therefore, we
performed a manual analysis of the issue title and body to identify
refactoring documentation patterns. Next, we grouped this subset
of issues based on specific patterns. Further, to avoid redundancy
of any pattern, we only considered one phrase if we found different
patterns with the same meaning. For example, if we find patterns
such as ‘simplifying the code’, ‘code simplification’, and ‘simplify
code’, we add only one of these similar phrases in the list of pat-
terns. This enables having a list of the most insightful and unique
patterns, and it also helps in making more concise patterns that are
usable for readers.

3 EXPERIMENTAL RESULTS
3.1 RQ1: What textual patterns do developers

use to describe their refactoring needs in
issues?

Methodology. To identify refactoring documentation patterns, we
manually inspect a subset of issues. These patterns are represented
in the form of a keyword or phrase that frequently occurs in the
issues associated with refactoring-related commits.
Results. Our in-depth inspection of the issues results in a list of 33
refactoring documentation patterns, as shown in Table 2. Our find-
ings show that the names of refactoring operations (e.g., ‘extract*’,
‘mov*’, ‘renam*’) occur in the top frequently occurring patterns, and
these patterns are mainly linked to code elements at different levels
of granularity such as classes, methods, and variables. These specific
terms are well-known software refactoring operations and indicate
developers’ knowledge of the catalog of refactoring operations.



An Exploratory Study on Refactoring Documentation in Issues Handling MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

Figure 1: Overview of our experiment design.

Extract
37.2%

Move
24.6%

Rename
21.5%

Change 14.7%

Inline 2.0%

Figure 2: Percentage of refactorings, clustered by operation
class.

We also observe that the top-ranked refactoring operation-related
keywords include ‘extract*’ and ‘mov*’. ‘pull up’ and ‘push down’
operations are among the least discussed refactoring operations
(similar to findings in [28, 31]). Moreover, we observe the occur-
rences of issue-fixing specific terms such as ‘fix*’, ‘remov*’, and
‘reduc*’. Next, we examine the most common keywords that de-
velopers use when expressing refactoring documentation in issues.
Figure 3 shows the top keywords used to identify refactoring docu-
mentations across the examined projects, that are ranked according
to their number of occurrences.

Table 3: Summary of refactoring patterns, clustered by
refactoring related categories.

Internal QA (%) External QA (%) Code Smell (%)

Complexity (0.26 %) Readability (0.23 %) Duplicate code (0.73 %)
Design Size (0.25 %) Performance (0.11 %)
Encapsulation (0.18 %) Usability (0.08 %)
Dependency (0.16 %) Extensibility (0.07 %)
Inheritance (0.08 %) Compatibility (0.06 %)
Coupling (0.02 %) Accuracy (0.05 %)
Abstraction (0.02 %) Modularity (0.05 %)

Flexibility (0.04 %)
Understandability (0.04 %)
Reusability (0.04 %)
Testability (0.03 %)
Maintainability (0.03 %)
Manageability (0.02 %)
Stability (0.006 %)
Accessibility (0.01 %)
Configurability (0.01 %)
Robustness (0.006 %)
Repeatability (0.006 %)
Effectiveness (0.006 %)

To better understand the nature of refactoring documentation,
we have classified the associated refactoring operations into 5
classes, namely, ‘changing’, ‘extracting’, ‘inlining’, ‘moving’, and

‘renaming’. Depicted in Figure 2, we cluster these operations as-
sociated with issues using a list of refactoring keywords defined
in a previous work [3]. The changing of the types belongs to the
‘changing’ class, whereas the extraction of classes and methods are
included in the ‘extracting’ class. As for, ‘moving’, it gathers all
the movement of code elements, e.g., moving methods, or pushing
code elements across hierarchies. Merging-related activities are in-
cluded in the ‘inlining’ class. Finally, the ‘renaming’ class contains
all refactorings that rename a given code element such as a class, a
package or an attribute. As shown in Figure 2, the ‘extracting’ op-
erations are highly documented in issues across the projects, and it
reached the percentage of 37.2%, higher than ‘moving’, ‘renaming’,
and ‘changing’ whose percentage is respectively 24.6%, 21.5%, and
14.7%. The ‘inlining’ operations, however, is the least documented
refactoring which had a ratio of only 2 %.

Figure 3: Popular refactoring textual patterns in issues.

3.2 RQ2: What are the quality attributes
developers care about when documenting
in issues?

Methodology.After identifying the different refactoring documen-
tation patterns, we identify and categorize the patterns into three
main categories (similar to [5, 6, 8, 9]): (1) internal quality attributes,
(2) external quality attributes, and (3) code smells.
Results. Table 3 provides the list of refactoring documentation pat-
terns, ranked based on their frequency, we identify in refactoring-
related issues. We observe that developers frequently mention key
internal quality attributes (such as inheritance, complexity, etc.), a
wide range of external quality attributes (such as readability and per-
formance), and code duplication code smell that might impact code
quality. To improve the internal design, the system structure opti-
mization regarding its complexity and design size seems to be the



MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA AlOmar et al., Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian D. Newman, and Ali Ouni

dominant focus that is consistently mentioned in issues (0.26% and
0.25%, respectively). Concerning external quality attribute-related
issues, we observe the mention of refactorings to enhance nonfunc-
tional attributes. Patterns such as ‘readability’, ‘performance’, and
‘usability’ represent the developers’ main focus, with 0.23%, 0.11%,
and 0.08%, respectively. Finally, for code smell-focused refactor-
ing issues, duplicate code represents the most popular anti-pattern
developers intend to refactor (0.73%).

4 DISCUSSION
Our research aims to explore refactoring documentation in issues
to provide future research directions that support developers in
understanding refactoring applied in issues.

RQ1 indicates that developers tend to use a variety of textual
patterns to document their refactorings in issues. These patterns
can provide either a (1) generic description of problems developers
encounter or (2) a specific refactoring operation name following
Fowler’s names [17]. Although previous studies show that rename
refactorings are a common type of refactoring, e.g., [27], we notice
that ‘mov*’ and ‘extract*’ are the topmost documented refactorings
in issues. This can be explained by the fact that developers tend to
make many design improvement decisions that include remodu-
larizing packages by moving classes, reducing class-level coupling,
and increasing cohesion by moving methods. Additionally, develop-
ers might use similar terminology when performing move-related
refactoring operations, i.e., Extract/Inline/Pull-up/Push-down [3]. As
shown in Figure 2, ‘extracting’ is the most documented refactorings.
An interpretation for this comes from the nature of the debugging
process that may include the separation of concerns which helps
in reducing the core complexity of a larger module and reduce its
proneness to errors [36]. In other words, developers tend to dis-
cuss more complex refactorings in issues, including refactorings
from the extract and move categories, due to their impact on the
design and code semantic preservation. This information can pro-
vide valuable references for refactoring documentation practice in
issues. For example, whether refactoring-related issue descriptions
have the relevant information is a critical indicator for reproducing
refactoring-related issues.

From RQ2, we observe that developers discuss quality concerns
when documenting refactorings in issues that can be related to:
(1) internal quality attributes, (2) external quality attributes, or (3)
code smells. When analyzing these quality concerns per issue types
reported in Table 1, we notice that complexity and duplicate code
are mostly documented with issue type named ‘bug’, whereas the
duplicate code and readability were the popular sub-categories for
refactoring-related issues type named ‘improvement’. For instance,
the developer discussed fixing design issues by putting common
functionalities into a superclass to eliminate duplicate code, break-
ing up lengthier methods to make the code more readable, and
avoiding nested complex data structure to reduce code complexity.
Moreover, we observe that code smell is rarely documented in is-
sues. As shown in Table 3, developers only focused on duplicate
code removal. Conversely, developers tend to report a variety of ex-
ternal quality attributes, focusing mainly on improving readability
of the code. This corroborates the finding by Palomba et al. [26],
where refactoring targeting program comprehension was mostly

applied during bug fixing activities. As developers discussed func-
tional and non-functional aspects of source code, future research
can further investigate the intent as to why and how developers
perform refactoring in issues. With a better understanding of this
phenomenon, researchers and tool builders can support developers
with automatically documenting refactorings in issues.

One of the main purposes of exploring refactoring documenta-
tion in issues is to better understand how developers cope with
their software decay by extracting any refactoring strategies that
can be associated with removing code smells [11, 35], or improv-
ing the design structural measurements [12, 20]. However, these
techniques only analyze the changes at the source code level, and
provide the operations performed, without associating it with any
textual description, which may infer the rationale behind the refac-
toring application. Our proposal, of textual patterns, is the first step
towards complementing the existing effort in detecting refactor-
ings, by augmenting it with any description that was intended to
describe the refactoring activity. As previously shown in Tables
2 and 3, developers tend to add a high-level description of their
refactoring activity, and mention their intention behind refactor-
ing (remove duplicate code, improve readability, etc.), along with
mentioning the refactoring operations they apply (type migration,
inline methods, etc.).

Overall, the documentation of refactoring in issues is an impor-
tant research direction that requires further attention. It has been
known that there is a general shortage of refactoring documen-
tation, and there is no consensus about how refactoring should
be documented, which makes it subjective and developer-specific.
Lack of design documentation forced developers to rely on the
source code to identify design problems [33]. Moreover, the fine-
grained description of refactoring can be time-consuming, as a typ-
ical description should contain an indication about the operations
performed, refactored code elements, and a hint about the intention
behind the refactoring. In addition, the developer specification can
be ambiguous as it reflects the developer’s understanding of what
has been improved in the source code, which can be different in
reality, as the developer may not necessarily adequately estimate
the refactoring impact on the quality improvement.

5 THREATS TO VALIDITY
The first threat relates to the analysis of open-source Java projects.
Our results may not generalize to systems written in other lan-
guages. Another potential threat to validity relates to our findings
regarding counting the reported quality attributes and code smells.
Due to the large number of commit messages, we have not per-
formed a manual validation to remove false positive commit mes-
sages. Thus, this may have an impact on our findings. Finally, we
constructed our dataset by extracting issues containing the term
‘refactor’ in the title. There is the possibility that we may have
excluded synonymous terms/phrases. However, even though this
approach reduces the number of issues in our dataset, it also de-
creases false-positives, and ensures that we analyze issues that are
explicitly focused on refactorings.

6 CONCLUSION & FUTUREWORK
In this study, we performed an exploratory study to understand
how developers document refactorings in issues. Specifically, we



An Exploratory Study on Refactoring Documentation in Issues Handling MSR 2022, May 23–24, 2022, Pittsburgh, PA, USA

identify refactoring terms/phrases patterns, study possible refac-
toring documentation types, and determine how many refactoring
terms/phrases exist in issues. Our results show that (1) develop-
ers mostly use move refactoring related terms/phrases to target
refactoring-related issues; and (2) developers tend to explicitly men-
tion the improvement of specific quality attributes and focus on
duplicate code removal. We envision our findings enabling tool
builders to support developers with automatically document refac-
toring in issues. Future work in this area includes investigating
which refactoring operation is more problematic in issues.

REFERENCES
[1] AlOmar. 2022. ReplicationPackage. https://smilevo.github.io/self-affirmed-

refactoring/
[2] Eman Abdullah AlOmar, Hussein AlRubaye, Mohamed Wiem Mkaouer, Ali Ouni,

and Marouane Kessentini. 2021. Refactoring Practices in the Context of Mod-
ern Code Review: An Industrial Case Study at Xerox. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 348–357.

[3] Eman Abdullah AlOmar, Jiaqian Liu, Kenneth Addo, Mohamed Wiem Mkaouer,
Christian Newman, Ali Ouni, and Zhe Yu. 2022. On the documentation of
refactoring types. Automated Software Engineering 29, 1 (2022), 1–40.

[4] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Christian Newman, and Ali
Ouni. 2021. On preserving the behavior in software refactoring: A systematic
mapping study. Information and Software Technology (2021), 106675.

[5] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Can
refactoring be self-affirmed? an exploratory study on how developers document
their refactoring activities in commit messages. In International Workshop on
Refactoring-accepted. IEEE.

[6] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, and Ali Ouni. 2021. Toward
the automatic classification of self-affirmed refactoring. Journal of Systems and
Software 171 (2021), 110821.

[7] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane
Kessentini. 2019. On the impact of refactoring on the relationship between quality
attributes and design metrics. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 1–11.

[8] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Christian
Newman, Ali Ouni, and Marouane Kessentini. 2021. How we refactor and how
we document it? On the use of supervised machine learning algorithms to classify
refactoring documentation. Expert Systems with Applications 167 (2021), 114176.

[9] Eman Abdullah AlOmar, Anthony Peruma, Mohamed Wiem Mkaouer, Chris-
tian D Newman, and Ali Ouni. 2021. Behind the scenes: On the relationship
between developer experience and refactoring. Journal of Software: Evolution
and Process (2021), e2395.

[10] Sajid Anwer, Ahmad Adbellatif, Mohammad Alshayeb, and Muhammad Shakeel
Anjum. 2017. Effect of coupling on software faults: An empirical study. In 2017
International Conference on Communication, Computing and Digital Systems (C-
CODE). IEEE, 211–215.

[11] Gabriele Bavota, Bogdan Dit, Rocco Oliveto, Massimiliano Di Penta, Denys Poshy-
vanyk, and Andrea De Lucia. 2013. An empirical study on the developers’ per-
ception of software coupling. In Proceedings of the 2013 International Conference
on Software Engineering. IEEE Press, 692–701.

[12] Gabriele Bavota, Sebastiano Panichella, Nikolaos Tsantalis, Massimiliano
Di Penta, Rocco Oliveto, and Gerardo Canfora. 2014. Recommending refactorings
based on team co-maintenance patterns. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. ACM, 337–342.

[13] Aline Brito, Andre Hora, and Marco Tulio Valente. 2020. Refactoring Graphs:
Assessing Refactoring over Time. arXiv preprint arXiv:2003.04666 (2020).

[14] Diego Cedrim, Leonardo Sousa, Alessandro Garcia, and Rohit Gheyi. 2016. Does
refactoring improve software structural quality? A longitudinal study of 25
projects. In Proceedings of the 30th Brazilian Symposium on Software Engineering.
ACM, 73–82.

[15] Massimiliano Di Penta, Gabriele Bavota, and Fiorella Zampetti. 2020. On the
relationship between refactoring actions and bugs: a differentiated replication.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 556–567.

[16] Eduardo Fernandes, Alexander Chávez, Alessandro Garcia, Isabella Ferreira,
Diego Cedrim, Leonardo Sousa, and Willian Oizumi. 2020. Refactoring effect
on internal quality attributes: What haven’t they told you yet? Information and
Software Technology 126 (2020), 106347.

[17] Martin Fowler, Kent Beck, John Brant, William Opdyke, and don Roberts. 1999.
Refactoring: Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA. http://dl.acm.org/citation.cfm?id=311424

[18] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An em-
pirical study of refactoringchallenges and benefits at microsoft. IEEE Transactions
on Software Engineering 40, 7 (2014), 633–649.

[19] Valentina Lenarduzzi, Francesco Lomio, Heikki Huttunen, and Davide Taibi. 2020.
Are SonarQube Rules Inducing Bugs?. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 501–511.

[20] Mohamed Wiem Mkaouer, Marouane Kessentini, Slim Bechikh, Kalyanmoy Deb,
and Mel Ó Cinnéide. 2014. Recommendation system for software refactoring
using innovization and interactive dynamic optimization. In Proceedings of the
29th ACM/IEEE international conference on Automated software engineering. ACM,
331–336.

[21] Wiem Mkaouer, Marouane Kessentini, Adnan Shaout, Patrice Koligheu, Slim
Bechikh, Kalyanmoy Deb, and Ali Ouni. 2015. Many-objective software re-
modularization using NSGA-III. ACM Transactions on Software Engineering and
Methodology (TOSEM) 24, 3 (2015), 1–45.

[22] Emerson Murphy-Hill, Andrew P Black, Danny Dig, and Chris Parnin. 2008.
Gathering refactoring data: a comparison of four methods. In Proceedings of the
2nd Workshop on Refactoring Tools. 1–5.

[23] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E Johnson, and Danny Dig.
2013. A comparative study of manual and automated refactorings. In European
Conference on Object-Oriented Programming. Springer, 552–576.

[24] Ally S Nyamawe, Hui Liu, Nan Niu, Qasim Umer, and Zhendong Niu. 2019.
Automated recommendation of software refactorings based on feature requests.
In 2019 IEEE 27th International Requirements Engineering Conference (RE). IEEE,
187–198.

[25] Willian Oizumi, Ana C Bibiano, Diego Cedrim, Anderson Oliveira, Leonardo
Sousa, Alessandro Garcia, and Daniel Oliveira. 2020. Recommending Composite
Refactorings for Smell Removal: Heuristics and Evaluation. In Proceedings of the
34th Brazilian Symposium on Software Engineering. 72–81.

[26] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An
exploratory study on the relationship between changes and refactoring. In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). IEEE,
176–185.

[27] Anthony Peruma, Mohamed Wiem Mkaouer, Michael J Decker, and Christian D
Newman. 2018. An empirical investigation of how and why developers rename
identifiers. In Proceedings of the 2nd International Workshop on Refactoring. 26–33.

[28] Anthony Peruma, Steven Simmons, Eman Abdullah AlOmar, Christian D New-
man, Mohamed Wiem Mkaouer, and Ali Ouni. 2022. How do I refactor this? An
empirical study on refactoring trends and topics in Stack Overflow. Empirical
Software Engineering 27, 1 (2022), 1–43.

[29] Christoffer Rosen and Emad Shihab. 2016. What are mobile developers asking
about? A large scale study using stack overflow. Empirical Software Engineering
21, 3 (01 Jun 2016), 1192–1223. https://doi.org/10.1007/s10664-015-9379-3

[30] Giulia Sellitto, Emanuele Iannone, Zadia Codabux, Valentina Lenarduzzi, Andrea
De Lucia, Fabio Palomba, and Filomena Ferrucci. [n. d.]. Toward Understanding
the Impact of Refactoring on Program Comprehension. ([n. d.]).

[31] Danilo Silva, Nikolaos Tsantalis, and Marco Tulio Valente. 2016. Why We
Refactor? Confessions of GitHub Contributors. In Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing (Seattle, WA, USA) (FSE 2016). ACM, New York, NY, USA, 858–870. https:
//doi.org/10.1145/2950290.2950305

[32] Danilo Silva and Marco Tulio Valente. 2017. Refdiff: detecting refactorings in
version histories. In 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). IEEE, 269–279.

[33] Leonardo Sousa, Anderson Oliveira, Willian Oizumi, Simone Barbosa, Alessandro
Garcia, Jaejoon Lee, Marcos Kalinowski, Rafael de Mello, Baldoino Fonseca,
Roberto Oliveira, et al. 2018. Identifying design problems in the source code: A
grounded theory. In Proceedings of the 40th International Conference on Software
Engineering. 921–931.

[34] Alexander Trautsch, Fabian Trautsch, and Steffen Herbold. 2021. MSR Mining
Challenge: The SmartSHARK Repository Data. (2021).

[35] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. 2008.
JDeodorant: Identification and removal of type-checking bad smells. In 2008 12th
European Conference on Software Maintenance and Reengineering. IEEE, 329–331.

[36] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2011. Identification of extract
method refactoring opportunities for the decomposition of methods. Journal of
Systems and Software 84, 10 (2011), 1757–1782.

[37] Nikolaos Tsantalis, Matin Mansouri, Laleh Eshkevari, Davood Mazinanian, and
Danny Dig. 2018. Accurate and efficient refactoring detection in commit history.
In 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
IEEE, 483–494.

https://smilevo.github.io/self-affirmed-refactoring/
https://smilevo.github.io/self-affirmed-refactoring/
http://dl.acm.org/citation.cfm?id=311424
https://doi.org/10.1007/s10664-015-9379-3
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2950290.2950305

	Abstract
	1 Introduction
	2 Study Design
	2.1 Source Dataset
	2.2 Refactoring Documentation Detection

	3 Experimental Results
	3.1 RQ1: What textual patterns do developers use to describe their refactoring needs in issues?
	3.2 RQ2: What are the quality attributes developers care about when documenting in issues?

	4 Discussion
	5 Threats To Validity
	6 Conclusion & Future Work
	References

