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Abstract

Android applications must evolve quickly to meet new user requirements,

to facilitate bug fixing or to adapt to technological changes. This evolution

can lead to various software quality problems that may hinder maintenance and

further evolution. Code refactoring is a key practice that is employed to ensure

that the intent of a code change is properly achieved without compromising

internal software quality. While the impact of refactoring on software quality

has been widely studied in object-oriented software in general, its impact in the

specific context of mobile applications is still unclear. This paper reports on

a large empirical study that aims to understand the impact of single and co-

occurrent refactorings on quality metrics in Android applications. We analyze

the evolution history of 800 open-source Android applications containing a total

of 84,841 refactoring operations. We first analyze the impact of single refactor-

ing operations on 21 common quality metrics using the Difference-in-Difference

(DiD) statistical model. Then, we identify the most common co-occurrent refac-

torings using association rule mining, and investigate their impact on quality

metrics using the DiD model. Our investigations deliver several important find-

ings. Our results reveal that co-occurrent refactorings are quite prevalent in
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Android applications. Overall, 60% of the total number of refactoring commits

contain multiple refactoring types, and 16 co-occurrent refactoring pairs tend

to be applied together leading to a higher impact than single refactorings. We

found that single refactorings have no statistically significant impact on quality

metrics in 74.7% of the cases, a positive impact in 23.1% of the cases, and a

negative impact in 2.2% of the cases. Whereas, co-occurrent refactorings have

no statistically significant impact on quality metrics in 54.3% of the cases, a pos-

itive impact in 42.4% of the cases, and a negative impact in 3.3% of the cases.

Our findings provide practical insights and suggest directions for researchers,

practitioners, and tool builders to improve refactoring practices in the context

of Android applications development.

Keywords: Mobile app, Android, refactoring, co-occurence, quality metrics,

empirical study

1. Introduction

Mobile applications have to continuously evolve in order to cope with main-

tenance and evolution tasks. Often under such time pressure, poor design or

implementation choices are made, which inevitably results in structural software

quality problems [1–4].

Refactoring is a software engineering practice that aims to increase the qual-

ity of the code, making it easier to understand, modify and maintain. Measuring

the impact of refactoring is challenging however, with several studies finding a

poor correlation between refactoring and quality measures such as software met-

rics or code smells [5, 6]. Refactoring practices may present additional challenges

in the context of Android applications due to their rapid evolution, short release

deadlines, small code base, and heavy reuse of external libraries and code [7–

9]. Indeed, mobile applications are inherently different to traditional desktop

applications, i.e., they run on mobile devices and are constrained by hardware

specifics such as memory, CPU, varying screen sizes, etc. Unlike object-oriented

software systems [6, 10–15], the impact of refactoring on quality metrics in mo-
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bile applications has received little attention.

As a first attempt to address this problem, we conducted an empirical

study [16] to investigate the impact of refactoring on quality metrics by an-

alyzing the evolution history of 300 open-source Android applications contain-

ing a total of 42,181 refactoring operations. In particular, we analyzed the

impact of these refactoring operations on 21 common quality metrics using a

causal inference method based on the Difference-in-Differences (DiD) model [17].

The results indicate that when refactoring affects the metrics it generally im-

proves them. In many cases refactoring has no significant impact on the metrics,

whereas one metric (LCOM) deteriorates overall as a result of refactoring. How-

ever, the major limitation of this initial study is due to the presence of noise in

the analyzed data, viz. (1) multiple refactoring operations are often applied in

the same commit making the impact of a specific refactoring operation hard to

measure and (2) commits with non-refactoring code changes are likely to affect

quality metrics. Such code changes can add more noise to the analyzed quality

metrics values, and impact the final observations.

To mitigate this problem, we conduct in this paper a large empirical study on

a dataset composed of 800 open-source Android applications that are freely dis-

tributed in the Google Play Store. We analyze the impact of 18 commonly used

refactoring operations on 21 well-known quality metrics in Android applications.

We identified a total of 36,681 refactoring commits and 84,841 applied refactor-

ing operations and measured quality metrics values before and after each refac-

toring operation. Then, we analyze these commits to distinguish between single

and co-occurrent refactorings. To assess the impact of single refactorings, we in-

vestigated the impact of each refactoring on the considered quality metrics using

a causal inference method based on the Difference-in-Differences (DiD) model,

one of the widely-used analytical techniques for causal inference [17]. For co-

occurrent refactorings, we investigated commits containing multiple refactorings

to discover patterns of co-occurrent refactorings that may occur in an Android

application using association rule mining based on the Apriori algorithm [18]

which is commonly used to find patterns in data. Finally, we analyze the impact
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of these co-occurrent refactorings on quality metrics.

Our results reveal that co-occurrent refactorings are quite prevalent in An-

droid applications. Overall, 60% of the total number of refactoring commits

contain multiple refactoring types, and 16 co-occurrent refactoring pairs tend

to be applied together leading to a higher impact than single refactorings. Re-

sults indicate that single refactorings have no statistically significant impact on

quality metrics in 74.7% of the cases, a significant positive impact in 23.1% of

the cases, and a significant negative impact in 2.2% of the cases. Whereas, Co-

occurrent refactorings have no statistically significant impact on quality metrics

in 54.3% of the cases, a significant positive impact in 42.4% of the cases, and a

significant negative impact in 3.3% of the cases.

This paper is an extension of our earlier conference paper published in the

Proceedings of the IEEE/ACM International Conference on Mobile Software

Engineering and Systems (MobileSoft 2021) [16]. It extends this earlier work in

the following ways:

1. We extend our original dataset from 300 to 800 Open Source Android

applications involving a total number of 84,841 applied refactoring opera-

tions,

2. We extend our study to explore both single and co-occurrent refactorings.

Moreover, we extend the list of studied refactorings from 10 to 15 common

refactoring operations,

3. We extend the list of quality metrics from 10 to 21 widely-used quality

metrics,

4. We use a fine-grained impact analysis by investigating the impact of single

and co-occurrent refactorings separately on quality metrics.

Replication package. We provide our comprehensive replication package

available for future extensions and replications [19].

Paper organization. The remainder of this paper is organized as follows.

Section 2 provides the necessary background in refactoring and quality metrics

to understand our empirical study. Section 3 presents the design of our study,
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while Section 4 presents and discusses our study results. Section 5 discusses

the implications of our findings for researchers, practitioners and educators.

Section 6 describes the threats to the validity of our study. Section 7 describes

related work and finally, in Section 8, we summarize our conclusions and make

suggestions for future work.

2. Background

This section provides the necessary background and concepts related to our

study.

2.1. Refactoring

Refactoring is the process of reworking program source code without chang-

ing its functionality (i.e., preserving its external behavior) to improve its struc-

ture in terms of readability, complexity, maintainability, extensibility, reusabil-

ity, etc. The concept of refactoring was introduced by Opdyke [20] and popular-

ized later in Fowler’s well-known book [21]. Fowler first provided a comprehen-

sive list of code smells along with a set of possible refactoring operations to fix

each smell type. In this paper, we focus on 15 common refactoring operations,

as described in Table 1.

Developers can refactor their code by applying single refactorings such as

Extract Method or/and multiple refactorings, i.e., co-occurrent refactorings,

which are defined as set of two or more interrelated single refactorings applied

to one or more code elements [22–24].

2.2. Internal Quality Attributes and Metrics

Internal quality attributes are indicators of code structural quality. In this

paper, we analyze five internal quality attributes that are closely related to the

15 refactorings that we aim to investigate. Table 2 lists the five internal quality

attributes analyzed including coupling, cohesion, complexity, design size and

inheritance. These attributes are internal because they regard the internal code
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Table 1: List of studied single refactoring operations.

Ref. Refactoring Description Level

MM Move Method Moves a method from one class to another. Method

EM Extract Method Creates a new method from an existing fragment of code. Method

IM Inline Method Replaces calls to the method with the method’s content and deletes the method itself. Method

RM Rename Method Renames a method. Method

PDM Push Down Method Moves a method from a class to those subclasses that require it. Method

PUM Pull Up Method Moves a method from (a) class(es) to its immediate superclass. Method

MA Move Attribute Moves Attribute from a class to another class. Attribute

PDA Push Down Attribute Moves an attribute from a class to those subclasses that require it. Attribute

PUA Pull Up Attribute Moves an attribute from a class(es) to their immediate superclass. Attribute

EC Extract Class Create a new class and moves fields and methods to this class. Class

ESupC Extract Superclass Creates a superclass from two classes with common attributes and methods. Class

ESubC Extract Subclass Creates a subclass and moves features that are used only in certain cases to this class. Class

RC Rename Class Renames a class. Class

MC Move Class Moves a class to another package. Class

EI Extract Interface Extracts a new general interface from two or more existing classes. Interface

structure including class hierarchies and compositions in methods and fields [25].

Each quality attribute can be measured by one or multiple quality metrics.

Quality metrics are widely-used to quantify software quality. One of the

commonly used metric suites is the CK suite, a quality metric catalog defined

by Chidamber and Kemerer [26]. Table 2 presents, for each quality attribute

considered in this paper, its associated quality metrics and also a description

of each metric. Special mention must be made of the LCOM metric. Although

LCOM is a cohesion metric, and cohesion is a positive properly, LCOMmeasures

lack of cohesion so it increases when cohesion deteriorates and decreases when

cohesion improves. We have taken care to ensure that this does not cause

confusion in reporting results related to the LCOM metric.

3. Empirical Study Design

In this paper, we extend our previous study [16] while ensuring that we

have high quality-data by removing noise to enhance data analysis and deliver

sound data-driven conclusions. In this section, we describe our empirical study

design following the guidelines from Runeson et al. [31] including our research

questions, and the experimental setup.
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Table 2: The list of studied quality attributes and metrics.

Quality Attribute Associated Metrics Metric Description

Coupling Coupling Between Objects (CBO) Number of classes that are coupled to a particular class [26].

Number Of Static Invocations (NOSI) Number of invocations of static methods [27]

Response For a Class (RFC) Number of methods invoked in the body of a class [26].

Fan-in (FANIN) The number of other classes that reference a class [25].

Fan-out (FANOUT) The number of other classes referenced by a class [25].

Cohesion Lack Of Cohesion of Methods (LCOM) Numbers of pairs of methods that have no instance variable references in common [26].

Tight Class Cohesion (TCC) Number of directly connected public methods in a class [27].

Complexity Cyclomatic Complexity (CC) Measure of the complexity of a module’s decision structure [28].

Weighted Methods per Class (WMC) The sum of all the complexities of the methods (McCabe’s Cyclomatic Complexity) in the class [26].

Essential Complexity (Evg) Measure of the degree to which a module contains unstructured constructs [28].

Nesting (MaxNest) Maximum nesting level of control constructs [29].

Design Size Lines of code (LOC) Number of lines of code ignoring spaces and comments [27].

Blank Line of Code (BLOC) Number of Blank lines [25].

Lines with Comments (CLOC) Number of lines containing comment [25].

Statements (STMTC) Number of statements [25].

Instance Variables (NIV) Number of instance variables [25].

Instance Methods (NIM) Number of instance methods [25].

Variable Quantity (VQTY) Number of declared variables [27].

Inheritance Depth of Inheritance Tree (DIT) Number of classes that a particular class inherits from [26].

Number Of Children (NOC) The number of direct descendants (subclasses) of a class [26].

base Classes (IFANIN) Number of immediate base classes [30].

3.1. Research questions

Our study aims at addressing the following research questions.

• RQ1. How do single refactoring operations applied by Android

developers affect quality metrics? This first research question aims at

investigating how a single refactoring operation can affect quality metrics

in Android applications.

• RQ2. What are the most common co-occurrent refactorings ap-

plied by Android developers? With this research question, we aim

at identifying the different co-occurrent refactorings that are commonly

applied in Android applications.

• RQ3. How do co-occurrent refactorings affect quality metrics?

The goal of this research question is to assess how co-occurrent refactorings

identified in RQ2 affects quality metrics.

3.2. Empirical Study Setup

To address our research questions, we design a controlled experiment where

we select two groups of code changes. A first group that consists of refactoring-
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related code changes (i.e., treatment group), and a second group that consists

of non-refactoring code changes (i.e., control group). Thereafter, we investi-

gate the impact of both groups on quality metrics to allow statistical analysis.

Figure 1 describes the overall process of our study which consists of eight main

steps: (1) Android applications selection, (2) refactoring extraction, (3) com-

mit extraction, (4) non-refactoring changes extraction, (5) quality metrics mea-

surement, (6) single refactorings impact analysis, (7) co-occurrent refactorings

identification, and (8) co-occurrent refactorings impact analysis.

Step 1: Android 

apps selection

Step 2: 

Refactorings 

detection

Step 3: Commit 

changes extraction

List of applied

refactorings

List of refactoring 

commits

Code changes 

before and after 

non-refactoring

commits

Step 5: Quality metrics

measurements

Control Group data:

values before and after

non-refactoring 

commits

Step 6: Single 

Refactoring Impact 

Analysis

Treatement group

Control Group

Step 7: Co-occurent

refactorings identification List of co-occurent

refactorings

Treatment Group data:

Quality metrics values

before and after

refactoring

Step 8: Co-occurent

Refactorings Impact 

Analysis

Answer 

RQ 3

Answer

RQ 2

Answer 

RQ 1

Step 4: Non-

refactoring changes 

extraction

800 apps

Figure 1: The overall process of our empirical study.

3.2.1. Step 1: Android applications selection

We target open-source Android applications that are freely distributed in

Google Play store and have their versioning history hosted on GitHub. For

this purpose, we performed a custom search on GitHub by targeting all Java

repositories in which the readme.md file contains a link to a Google Play Store

page. Overall, we obtained 19,212 applications. Thereafter, inspired by previous

works [16, 32, 33], we applied the following filters to exclude:

• Applications whose Github repository does not contain an AndroidManifest.xml

file as they clearly do not refer to real Android applications. The result of

this filter was a collection of 5,766 applications.

• Applications for which the corresponding Google Play page is not existing

anymore. This filter returned 3,160 applications.

• Repositories that contain forks of other repositories. This filtering step

leads to a final set of 1,923 Android applications.
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Thereafter, we randomly selected a set of 800 applications which represents

over 40% of the final set, exhibiting a total of 84,841 refactoring operations.

We focused our study to this set of applications for computational reasons. It

is worth noting that the sample size of 800 applications and 84,841 refactoring

operations is larger than related studies on the impact of refactoring on soft-

ware quality [6, 12, 13, 16], and than typical samples in software engineering

research [34]. Overall, the sample of selected applications have a median size

of 6,854 LOC, a median number of contributors of 2, and a median number of

forks of 3. Table 3 and Figure 2 summarize the statistics about the collected

dataset.
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Figure 2: Dataset statistics in the terms of the number of forks, contributors, and size.

Table 3: Dataset statistics.

Statistic Count

# of Android applications 800

# of commits with refactorings 36,681

# of commits containing a single refactoring type 14,672

# of commits containing multiple refactoring types 22,009

# of commits without refactorings 36,681

# of refactoring operations 84,841

Total number of commits 723,360

3.2.2. Step 2: Refactoring detection

In this step, we collect all the refactoring operations applied to the studied

applications. We utilize RefactoringMiner (version 2.1.0) [35] to detect applied
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refactoring instances on the commit level. RefactoringMiner is a command-line

based open source tool that is built on top of the UMLDiff [36] algorithm for dif-

ferencing object-oriented models. RefactoringMiner has been shown to achieve a

precision of 98% and a recall of 87% [35, 37]. The tool walks through the commit

history of a project’s Git repository to extract refactorings between consecutive

commits. RefactoringMiner supports the detection of various common refactor-

ing types from Fowler’s catalog. Among the supported refactorings, all single

refactoring types detected by RefactoringMiner were considered in this study,

except the Rename Method and Rename Class refactorings for RQ1 as they are

not directly related to any of the structural metrics considered in our study.

Overall, our extraction process identifies a list of 15 common single refactoring

types which are amongst the most common refactoring types [10, 13, 15, 38–40].

Tables 1 and 4 report the list and the number of refactorings, respectively, that

are investigated in our study.

Table 4: The list of refactoring applied to the analyzed applications.

Refactoring type Number

Extract Method 20,494

Rename Method 13,872

Move Method 11,496

Move Attribute 10,303

Push Down Method 6,748

Inline Method 5,123

Pull Up Attribute 3,374

Pull Up Method 2,246

Extract Interface 2,160

Extract Class 2,021

Extract Sub Class 1,930

Push Down Attribute 1,910

Move Class 1,200

Extract Super Class 1,140

Rename Class 924

Total 84,841
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3.2.3. Step 3: Commit changes extraction

After the extraction of all refactoring operations, we collect the IDs of all

refactoring commits, i.e., commits in which a refactoring operation was applied,

as well as the IDs of the commits that immediately precede the refactoring

commit. The Github API1 facilitates this process. In particular, we use the git

clone command to download the source code of each refactoring commit as well

as its immediately preceding commit. These commits enable the identification

of quality metrics values before and after the application of refactoring.

3.2.4. Step 4: Non-refactoring changes extraction

In this step, we extract a set of commits that contain non-refactoring changes

for our controlled experiment. To do this, based on the treatment group, we

randomly selected an equivalent set of non-refactoring commits representing our

control group in such a way that the number of non-refactoring commits is equal

to the number of refactoring commits for each project. For each commit, we

collected its ID as well as the commit that precede it. Thereafter, we performed

the same procedure adopted in Step 3 to collect their source code.

3.2.5. Step 5: Quality metrics measurement

We selected a comprehensive set of commonly acknowledged software quality

metrics based on prior works [10, 16, 26, 28, 29, 41–45]. Then, we checked if

the metrics assess several object-oriented design aspects to map each internal

quality attribute to the appropriate structural metric(s). More generally, we

extract, from the literature review, all the associations between metrics with

internal quality attributes.

To assess the impact of refactoring on software quality, we need to measure

a set of quality metrics. In particular, we measure for each applied refactoring

change as well as non-refactoring changes, the class level metrics before and after

the change has been applied in the commit level. Specifically, since we already

1https://docs.github.com/en/rest
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have the list of refactoring operations applied in each commit, we compute

for each class the quality metric values before and after each commit in both

treatment and control groups. To calculate the values of these metrics we use

two widely used software quality software metrics suite tools, the CK-metrics2

tool and the Scitools Understand3 tool including CK suite, McCabe, and Lorenz

and Kidd’s metrics. CK-metrics is a command-line based tool provided by

Aniche [27]. Understand is a popular quality assurance and static analysis

framework that allows calculating a variety of quality metrics using command

line. We considered a total of 21 common quality metrics that cover five different

quality attributes including coupling, cohesion, complexity, design size, and

inheritance. The list of considered quality metrics is provided in Table 2.

3.2.6. Step 6: Single Refactoring Impact Analysis

In this step, we investigate whether or not each metric is improved by refac-

toring. In order to do this, we set up two hypotheses, the null hypothesis H0

assumes that a refactoring operation ri does not improve a quality metric mj ,

and the alternative hypothesis H indicates that the refactoring ri improves mj .

After collecting the metric values before and after each commit in both

treatment and control groups, we calculate the differences between their quality

metric values before and after the refactoring change, at the class level. There-

after, we use two statistical methods (1) statistical significance, and (2) causal

inference.

Statistical Significance Analysis. To capture the overall trends of the

variation in the metric values we use statistical significance analysis. To do so,

for each refactoring operation ri, and each metrics mj , we use the Wilcoxon

rank-sum test [46], a non-parametric test, to assess the statistical differences

between the distribution of mj before and after the application of ri. In addition

to the Wilcoxon test, we used the non-parametric effect Cliff’s delta (δ) [47]

2https://github.com/mauricioaniche/ck
3https://www.scitools.com/
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to compute the effect size, i.e., the magnitude of the difference between the

distributions. The value of effect size is statistically interpreted as:

• Negligible : if | δ |< 0.147,

• Small : if 0.147 ≤| δ |< 0.33,

• Medium : if 0.33 ≤| δ |< 0.474, or

• High : if | δ |≥ 0.474.

Furthermore, to better assess the impact of a specific refactoring opera-

tion on quality metrics, we performed a causal inference experiment to assess

whether the metrics variations are due to the refactoring changes or to other

code changes.

Causal Inference Analysis. Causal inference stems from the social sci-

ences and explores cause and effects as its main concern [17]. In econometrics,

difference-in-differences (DiD) method is one of the key analytical elements for

causal inference. DiD is used to statistically analyze actual and counterfactual

scenarios, thereby enabling a causality analysis. To investigate the effects of a

treatment in statistics, one cannot see the results with and without an inter-

vention based on one individual only. As shown in Figure 3, the DiD model

addresses this problem by comparing two groups, (1) a group with the interven-

tion, called treatment group (i.e., a set of code changes with refactoring) and

(2) a group without it, called a control group (i.e., a set of code changes with-

out refactoring). The underlying assumption of DiD design is that the trend

of the control group provides an adequate proxy for the trend that would have

been observed in the treatment group in the absence of treatment. Let, T and

C, the treatment and the control group, respectively. The refactoring impact

RI of a given refactoring operation R on a given quality metric Mi is calculated

as follows:

RI(R,Mj) = Y R
Mi

− Y C
Mi

(1)
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where Y R
Mi

is the median perceived impact after the application of the set of

refactorings of type R on the treatment group T on the metric Mi; and Y C
Mi

is

the median perceived change in the control group C on the metric Mi.
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Impact trend in the 
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Code

change

Figure 3: An example of the causal inference method using a DiD model showing the refac-

toring impact on a quality metric before versus after the application of refactoring [16].

3.2.7. Step 7: Co-occurrent Refactorings Detection

After the extraction of all refactoring operations (Step 2), we employ asso-

ciation rule mining using the Apriori algorithm [18]. It has been successfully

used to mine association between items in many problems such as market basket

analysis [48], intrusion detection [49] and supply chain management [50] . The

algorithm parses the dataset, i.e., transactions, and generates frequent itemsets

based on filtering criteria set. Association rules are generated during searching

for frequent itemsets. An association rule is defined as an implication of the

form X ⇒ Y, where X, Y ⊆ I and X ∩ Y = ∅.

Let I = {i1, i2, ..., in} be a set of n items, and T = {t1, t2, ..., tm} a set of

m transactions. In our study, T is the set of classes present in version, and

each item in the set I indicates the presence of two specific refactoring types.

Therefore, an association rule translates a co-occurrence between a refactoring

Ri and other refactoring Rj on the same class. Specifically, the association rule

is written as follows: refactoring(Ri) ⇒ refactoring(Rj).

We use the support [18], confidence [18] and lift [51] scores to quantify the
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degree of association between each pair of refactorings.

1. Support : is an indication of how frequently an itemset appears in the

dataset and consists of the proportion of transactions in the dataset that

contain both Ri and Rj .

Support(Ri ⇒ Rj) = P (Ri ∪Rj) (2)

2. Confidence: is the proportion of transactions in the dataset containing Ri,

that also contain Rj .

Confidence(Ri ⇒ Rj) = P (Ri ∪Rj)/P (Ri) (3)

3. Lift : is the ratio of the observed support to that expected if Ri and Rj

were independent.

Lift(Ri ⇒ Rj) = P (Ri ∪Rj)/(P (Ri)× P (B)) (4)

The range of values for support and confidence is between 0 and 1, whereas

lift can take any value between 0 and +∞. When the lift value is greater than

1, it implies that the refactoring pair is highly correlated.

Moreover, we use the Pearson’s Chi-square coefficient and Cramer’s V [52]

tests to determine if there were significant associations between refactoring op-

erations. Specifically, for any Chi-square test that was found to be significant

(p-value < 0.001), Cramer’s V test is calculated and it has a value between 0

and 1. A value of 0 indicates complete independence, and a value of 1 indicates

complete association. The formula is given in Equation 5:

V =

√
χ2

n×min(row − 1, col − 1)
(5)

3.2.8. Step 8: Co-occurrent Refactorings Impact Analysis

In this step, we evaluate the impact of co-occurrent refactorings on internal

quality attributes for each class in which c-occurrent refactorings was applied.

We chose to perform the analysis in a class-level due to a recent study about the
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effect of co-occurrent refactorings on code smells indicating that co-occurrent

refactorings are often applied at class level [53]. To do so, we perform the same

statistical method employed in Step 6 using the DiD model.

4. Empirical Study Results

This section describes and discusses the results of our investigations.

4.1. RQ1. How do single refactoring operations applied by Android developers

affect quality metrics?

In this research question, we assess the impact of single refactoring oper-

ations on quality metrics. In particular, we aim at understanding how single

refactorings affect each quality metric. Table 5 provides the detailed results

where each column reports (i) the impact of the corresponding refactoring type

based on the DiD technique using Equation 1, (ii) the predominant behavior

indicating whether the refactoring impact is positive or negative, and (iii) the p-

value as well as the Cliff’s delta (δ). Overall, Table 5 reports 273 measurements

on the experimental group, i.e., 13 refactoring types × 21 quality metrics.

The results indicate that in 74.7% of the cases (204 out of 273 measurements

as represented in the while color in the table), refactoring have no statistically

significant impact on quality metrics, while it has a positive impact in 23.1% of

the cases (63 out of 273 as presented in blue) and a negative impact in 2.2% of

the cases (6 out of 273 as presented in red). In the following, we present and

discuss the obtained results for each quality attribute along with illustrative

examples from our experiments.

Finding 1.1. Single refactorings have no statistically significant impact on

quality metrics in 74.7% of the cases, a significant positive impact in 23.1%

of the cases, and a significant negative impact in 2.2% of the cases.
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4.1.1. Results for Coupling

• CBO: From Table 5, we observe that Extract Super Class is the only in-

fluential refactoring that improves the CBO by a median value of 1, with

a negligible effect size. We expect that the Extract Super Class refac-

toring has a direct impact only on size and inheritance (See Table 5).

Hence, if there are two different classes that implement similar function-

alities, Extract Super Class can be applied to create a single Super Class

that implements such common functionalities. Consequently, the dupli-

cate code will be removed from both subclasses, thereby reducing their

size and increasing the inheritance depth. Still, it can indirectly reduce

dependencies through polymorphism [54, 55]. We also observe that other

inheritance-related refactorings such as Extract Sub Class, Push Down

Method, Push Down Attribute tend to have a negative impact on CBO.

While, the obtained results for those refactoring are not statistically differ-

ent from the control group, this finding indicates that developers may need

to pay attention when dealing with inheritance aspects to avoid increasing

the coupling in their code.

• RFC: As can be seen from Table 5, Extract Interface is the most im-

pactful refactoring which improves RFC by 7, with a negligible effect size.

Moreover, Move Class, Extract Super Class, Move Attribute and Pull Up

Method have shown to improve RFC by a median score between 7 and

5 with a negligible and small effect size, while less impact is observed

by Move Method, Inline Method, Push Down Attribute and Extract Class

refactorings with a median score between 4 and 1 with a negligible and

small effect size.

• FANIN: From Table 5, we observe that Move Method, Move Attribute,

and Inline Method are the most influential refactorings which improves

FANIN by 1 with a negligible effect size. Furthermore, Move Class tend

to deteriorate FANIN by 1 but with a negligible effect size.
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• FANOUT: From Table 5, we observe that Move Attribute is the most in-

fluential refactoring on FANOUT which improve it by 3. Moreover, Move

Method and Move Class refactorings have shown to improve FANIN by a

median score of 2 with a negligible and small effect sizes. Whereas, Inline

Method tend to have less impact on the metric with a median improvement

of 1 and a negligible effect size.

• NOSI: From Table 5, we observe that the NOSI metric has not been

impacted by any of the applied refactorings since when comparing the

distributions of values before and after refactoring, no statistically signif-

icant difference is observed. This result is not very surprising, as most of

refactorings do not have a direct impact on static methods.

It is worth noting that our findings in Android applications share some sim-

ilarities with desktop applications in terms of coupling metrics which generally

tend to be positively impacted after applying refactoring [56, 57]. Hence, we

found that the Extract Method, Move Method and Inline Method refactorings

are the most applied refactorings to improve coupling in Android applications,

similarly to desktop applications [6, 25, 58].

As an illustrative example, we refer to the HIITMe4 app, Commit #e8b345b [59]

which implements a Move And Inline Method. This refactoring moves the

startDrag()method from the ScrollingProgramView class to ProgramDetailView.

Then, the method was inlined with the startDrag(DraggableView, int, int)

method which clearly resulted in a reduced coupling with a drop of the CBO

from 11 to 8, the RFC from 12 to 10, the FANIN from 4 to 2. However, the

refactoring produced no change in the FANOUT and NOSI metrics.

4https://github.com/AlexGilleran/HIITMe
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Finding 1.2. Refactoring has a significant positive impact on coupling in

terms of the CBO, RFC, FANIN and FANOUT metrics with a negligible

or small effect size, while no significant impact was found on the NOSI

metric.The most influential refactorings that promote low coupling areMove

Attribute, Move Method, Inline Method and Extract Super Class.

4.1.2. Results for Cohesion

• LCOM: The results from Table 5 show that LCOM is improved with var-

ious refactoring types. The most influential ones are Extract Sub Class,

Push Down Attribute and Extract Super Class as they decrease the median

value by 14 (small effect size), 11 (negligible effect size) and 10 (medium

effect size), respectively. Whereas, Pull Up Method tend to have less im-

pact on LCOM with a median improvement of 7 (small effect size). These

results are expected because Pull Up, Push Down and Move operations

are typically recommended for moving code elements across classes [60];

thus, the class cohesion should improve.

• TCC: From Table 5, we observe that the TCC metric has not been im-

pacted by any of the applied refactorings since when comparing the values

before and after refactoring, no statistically significant difference is ob-

served. This is an unexpected result since cohesion is generally expected to

be improved after applying the moving-related refactoring operations [60].

However, it is worth noting that none of the refactorings applied deterio-

rate the metric.

Overall, we notice that we found a number of similarities between our results

for Android applications and prior works on desktop applications. Similar to

Fernandes et al. [58] and Chavez et al. [25], we found that Extract SubClass

and Extract SuperClass improve the cohesion. One of the examples that shows

the impact of Extract SubClass refactoring on cohesion was found in the Glide

Player5 application from Commit #c8a6d71 [61] that involves the extraction

5https://github.com/philn/glide
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of MusicLibraryFragment subclass from the LibraryFragment class. This

refactoring improved the cohesion by decreasing the LCOM metric from 77 to

71. We also observe a slight increase in terms of TCC by 0.1.

Finding 1.3. Some refactorings have a significant positive impact on cohe-

sion in terms of the LCOM metric, while no significant impact was found

on the TCC metric. The most influential refactorings that promote low co-

hesion are “Extract Sub Class”, “Extract Super Class”, and “Push Down

Attribute” with an effect size ranging from negligible to medium.

4.1.3. Results for Complexity

• WMC: The results of the WMC metric depicted in Table 5 indicate that

Extract Class and Extract Interface are the most influential refactorings

that improve the WMC with a median value of 8 and 6, respectively, with a

negligible effect size in both cases. Indeed, the extraction-related refactor-

ing operations are effective at removing code duplication and thus reducing

complexity. Duplicate code often occurs when two classes perform simi-

lar tasks in the same way, or perform similar tasks in different ways [21].

Moreover, several other refactorings tend to also improve WMC including

Extract Method, Inline Method, Move Attribute, Move Class, Push Down

Attribute, Pull Up Attribute, Pull Up Method, Extract Super Class and

Push Down Method refactorings, but with less impact varying from 1 to 4

with negligible and small effect size. These improvements make sense since

the applied refactoring operations deal with the simplification of methods

inside a class. Particularly, the extraction of sub-methods that tend to

break down long methods, or moving the methods to the appropriate

class which decrease the complexity of the methods in the class.

• EVG: As can be seen in Table 5, Move Method is the most influential

refactoring on EVG which improve it by 2 with a negligible effect size.

Extract Class and Push Down Method have shown to improve EVG by a

median score of 1 with a negligible effect size, each.
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• MaxNest: The results of the MaxNest metric depicted in Table 5 indicate

a significant improvement when applying Extract Super Class refactoring

with a median value of 5 exhibiting a medium effect size. Moreover, less

impact is observed for Extract Method, Push Down Method, Extract Inter-

face and Move Class with a negligible effect size, in each refactoring.

• CC: As it can be seen from Table 5, Extract Class is the most influen-

tial refactoring that improve CC with a median value that is significantly

decreased by 3, even though it is accompanied by a small effect size. More-

over, we observe that Extract Method improves CC with a median of 1 with

a negligible effect size.

It is worth noting that our findings in Android applications share some

similarities with desktop applications for the complexity which is improved by

applying Extract Method in both Android and desktop applications [58].

One of the examples that show the complexity improvement was found in

the Daily Dozen Android6 app, in Commit #8aa4b45 [62]. Specifically, the

developer applied an Extract Class refactoring operation. This was realized

through extracting the DateFragment class from the MainActivity class. This

change resulted in an important complexity improvement for the DateFragment

class, with a drop of its WMC from 10 to 6, its EVG from 4 to 3 and its CC

and MaxNest from 3 to 1, each.

Finding 1.4. Several refactoring types tend to improve complexity by de-

creasing the WMC, EVG, MaxNest and CC metrics with a effect size ranging

from negligible to medium. The most impactful refactorings are related to

code extraction such as “Extract Method”, “Extract Class”, “Extract Inter-

face” and “Extract Super Class” which typically help simplifying methods

structure and/or reducing duplicate code.

6https://github.com/nutritionfactsorg/daily-dozen-android
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4.1.4. Results for Inheritance

• DIT: We notice from Table 5 that Push Down Method and Push Down

Attribute improve DIT by a median value of 4 with a negligible effect size,

each.

• NOC: We observe from the results in Table 5 that the Push Down Method

and Push Down Attribute increase the NOC metric by a median of 1 and

2 with a negligible effect size. The pushing down refactorings are typically

applied when a method is needed by one or more subclasses, but not all

of them. It could be useful to create an intermediate subclass and move

the method to it. Therefore, this will allow the increase of immediate

subclasses of a class.

• IFANIN: As can been seen in Table 5, applying Push Down Method and

Push Down Attribute tend to increase IFANIN by a median value of 1 with

a negligible effect size, each. However, this result is contradictory since

pushing down methods do not directly impact on the number of classes.

One of the examples that illustrates the inheritance improvement was found

in the History Cleaner Pro7 app, in Commit # 23852db [63]. Specifically, the de-

veloper applied a Push Down Method refactoring involving the class CleanItem

and its subclass CleanItemStub. This was realized through pushing down

the getDataPath(), getIcon(), and getUniqueId() methods from the class

CleanItem to CleanItemStub subclass. These changes resulted in inheritance

improvement for the CleanItem class, with a drop of its DIT from 6 to 2.

Finding 1.5. Refactoring has a significant positive impact on inheritance

in terms of the DIT metric, while a negative impact was found on the NOC

and IFANIN metrics. The most influential refactorings that promote low

inheritance are “Push Down Method”, and “Push Down Attribute” with a

negligible effect size.

7https://github.com/JohnNPhillips/HistoryCleanerPro
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4.1.5. Results for Design Size

• LOC: As shown in Table 5, the refactoring Extract Interface is the most

influential refactoring that improves the LOC metric by 6 with a negligible

effect size. Moreover, several other refactorings such as Extract Super

Class and Push Down Method have shown to increase the LOC with a

median of 5 and a negligible effect size, while less impact is observed by

the Move Attribute, Move Method and Extract Class with a median value

varying from 1 to 3 with an effect size ranging from medium to small.

• BLOC: From Table 5, we observe that the BLOC metric has not been

impacted by any of the applied refactorings since when measuring the

refactoring impact, no statistically significant result is observed.

• CLOC: We observed also that CLOC metric has not been impacted by

any of the applied refactorings. This finding indicates that developers do

not seem to pay attention to comments in their code during refactoring

tasks.

• STMTC:We observe from the results in Table 5 that STMTC is impacted

by only Move Attribute which reduce significantly the STMTC metric by

5, but with a negligible effect size.

• NIM: As shown in Table 5, only Move Method improves the NIM metric

by a median value of 1, with a negligible effect size. However, we notice

also that two refactorings caused the metric to deteriorate including Move

Attribute and Move Class by a median value of 1, each with a negligible

effect size.

• NIV: The results of the NIV metric depicted in Table 5 indicate that

only Extract Super Class, Extract Sub Class refactorings improve the NIV

metric by decreasing the median by a value ranging from 1 to 2 with a

negligible effect size.

• VQTY: We notice from Table 5 that Inline Method is the most influential
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refactoring which improve the metric by decreasing the median value by

8 with a medium effect size. Moreover, various other refactorings improve

the VQTY, but with less impact by a median value ranging between 1

and 3 including Extract Interface, Extract Class, Pull Up Method, Pull Up

Attribute, Extract Super Class and Extract Sub Class with a negligible or

small effect size.

It is worth noting that our results match also with desktop applications [6,

58]. As an illustrative example, we refer to the LucidLink8 app, Commit

#3b68da9 [64] which implements a Move And Inline Method. The refactor-

ing moves the method access1() from the class BluetoothSetup to the class

AlarmReceiver where the method is inlined to the onReceive(context Context,

intent Intent) method which clearly resulted in a reduced size with a drop

of its LOC from 66 to 50, its STMTC from from 23 to 20, its NIM from 11 to

9, its NIV from 19 to 15 and its VQTY from 29 to 22.

Finding 1.6. Most refactoring types tend to reduce the design size metrics

except BLOC and CLOC which indicates that developers do not seem to pay

attention to comments in the code during their refactoring tasks. The most

influential refactoring is Inline Method with a medium effect size.

Looking at the control group results from Table 5, we noticed that the differ-

ent quality metrics did not exhibit any significant change with non-refactoring

changes (control group), except for the LOC metric that tend to increase after

each commit. Indeed, this result is inline with Lehman’s law on software evolu-

tion [65] indicating that it is typical that the size of a software system increases

over time as the project evolves. Hence, our DiD-based statistical model pro-

vides evidence that the metrics changes observed in the experiment data are

due to refactoring activities and not to chance.

Table 6 shows the lists of corresponding refactorings for each quality at-

tribute in this work where we reduced the noise by considering only commits

8https://github.com/Venryx/LucidLink/

25

https://github.com/Venryx/LucidLink/


that contain one refactoring and the previous one [16]. Refactoring names listed

in bold means that they are applied only in one of the studies. For instance, we

can observe that Extract Method improves coupling in the previous study but

this is not the case for the current results. Looking at Table 6 we conclude that:

• For cohesion, the results obtained by both studies differ since none of the

impactful refactorings identified in the previous study are different from

those identified in the current study.

• Extract Method and Push Down Method yielded an improvement in cou-

pling only in the previous study. However, our results show that several

other refactorings including Extract Interface, Move And Inline Method,

Move And Rename Method and Push Down Method improve coupling. It

is worth noting that these refactorings were not considered in the previous

study.

• Push Down Method is the only common refactoring that improve the in-

heritance in the two studies.

• All the joint refactorings in the two studies, except Extract Method that

were identified only in the previous study, improve the design size. How-

ever, we observe that the majority of the additional refactorings that are

considered in this study improve the design size.

In conclusion, we notice that there are several similarities when comparing

the two studies, except for the cohesion attribute where the identified refactor-

ings are totally different. In addition, we noticed that several refactoring types

that are added in this study improve the considered quality attributes.

4.2. RQ2. What are the most common co-occurrent refactorings applied by

Android developers?

Our motivation from studying the phenomenon of co-occurrent refactorings

stems from the observation there is a large number of commits that contain

multiple refactoring operations. Indeed, we observe from Table 3 that over
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Table 6: Comparison of the refactorings applied in this study versus the previous one [16].

Applied refactorings

Study Previous study [16] Current Study

Cohesion
Move Attribute, Move Method, Extract And

Move Method

Pull Up Method, Extract Super Class,

Extract Sub Class, Push Down Attribute

Coupling

Extract Method, Move Method, Move Attribute,

Extract And Move Method, Inline Method, Push

Down Method, Pull Up Method, Extract Super

Class, Move Class

Move Method, Move Attribute, Inline Method, Pull Up

Method, Extract Class, Extract Super Class,

Extract Interface, Move Class, Move And

Inline Method, Push Down Attribute

Complexity

Extract Method, Move Method, Extract And

Move Method, Pull Up Attribute, Pull Up

Method, Extract Super Class, Move Class

Extract Method, Move Method, Move Attribute,

Inline Method, Pull Up Method, Extract Class, Push Down Method,

Extract Super Class, Extract Interface, Move Class,

Push Down Attribute

Inheritance
Pull Up Method, Push Down Method, Pull Up

Attribute, Extract Super Class, Move Class
Push Down Method,Push Down Attribute

Design size

Extract Method, Move Attribute, Move Method,

Extract And Move Method, Push Down Method,

Pull Up Method, Pull Up Attribute, Extract Super

Class, Move Class

Move Method, Move Attribute, Inline Method, Pull Up Method,

Pull Up Attribute, Extract Class, Push Down Method, Extract

Super Class, Extract Sub Class, Extract Interface, Move Method,

Push Down Attribute

60% (22,009 out of 36,681) of refactoring commits contain multiple refactoring

types. Hence, we investigate these commits to discover patterns of co-occurrent

refactorings that may occur in the studied applications. We use the Apriori

algorithm to determine the associations between the different applied refactoring

operations in the same commits. To generate frequent itemsets, we selected

a minimum confidence of 0.5. Table 7 presents the frequent itemsets where

each itemset comprises two refactoring types. It is worth noting that we did

not found any itemset composed by more than two refactoring types at this

confidence level. We also conduct Chi-squared and Cramer’s V tests to check

whether the associations between refactorings are statistically significant or not.

It is also worth noting that we found some reciprocal associations with some

variations in the confidence value. As can be observed from the table, we mainly

found that some refactoring operations tend to co-occur frequently with other

refactorings leading to 16 co-occurrent refactorings. In the following we describe

these co-occurrent refactorings.

• Extract Method refactoring is often associated with various other code

refactoring types, and in particular with Extract Interface, Rename Method

and Move Method. For the association with the Rename Method, this is an
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intended outcome since the method undergoing an extract method refac-

toring is generally also renamed to reflect its new purpose. As for the

association with the Move Method refactoring, we found after performing

some manual analysis that in many cases Android developers tend to ex-

tract and move methods for many reasons depending on their intention

(e.g., improving code structure). Finally, the strong association with the

Extract Interface was not intuitive. Hence, we performed a manual anal-

ysis to understand the reasons. We found that each of them is applied

for a specific reason such as extracting a part of a method to be moved

to the extracted interface which also justifies the co-occurence with Move

Method and Rename Method.

• Extract Interface refactoring is often co-applied with three refactoring

types, namely Extract Method, Move Method and Move Attribute. The

Extract Interface and Move Method/Attribute refactorings do co-occur

since when developers extract an interface, they are moving the identi-

cal portion of the main interface to its own one, and thus they will apply

moving related refactorings.

• Inline Method often co-occurs with Move Method refactoring. We conduct

a qualitative investigation on various samples of co-occurrent refactorings,

and we simply found that generally developers inline and move methods

for various reasons (e.g., improving code structure, simplifying code, etc.).

• Move Method tend to co-occur with 5 other refactoring types, namely Ex-

tract Interface, Extract Method, Inline Method, Move Attribute and Push

Down Attribute. For the association with Move Attribute and Push Down

Attribute refactorings the result is likely to be expected since when de-

velopers move a method from its own class to anther class, they should

certainly move the attributes used by this methods. As for the association

with Extract Method and Inline Method their application depends on the

intention of developer (e.g., the intention of increasing class cohesion or

coupling, etc.).
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• Push Down Attribute often co-occurs with Move Attribute. It is worth

noting that this association is reciprocal as shown in Table 7. This could

be an expected consequence since their strong association with the Move

Method refactoring increases their chance to be associated.

To illustrate some of these co-occurrence patterns, we report an exam-

ple of co-occurrent refactorings from a particular commit in the IRremote9

application [66]. In particular, the updateRemotesList() method was ex-

tracted from the init() method in the class SelectRemoteListView and was

moved to the MyAdapter class. Also, the getView method was moved from the

SelectRemoteListView to the MyAdapter class. Thus, the developer applied an

Extract And Move Method refactoring followed by a Move Method refactoring in

the SelectRemoteListView class. Such refactorings are typically inter-related,

and therefore tend to co-occur frequently in the same commit as Android de-

velopers endeavor to clean up their code.

Finding 2. Co-occurrent refactorings are quite prevalent in Android

applications. Overall, 60% of the total number of refactoring commits

contain multiple refactoring types, and several co-occurrent refactor-

ings (16) tend to occur very often (e.g., Extract Method and Rename

Method).

4.3. RQ3. How do co-occurrent refactorings affect quality metrics?

In this section, we assess the impact of co-occurrent refactorings identified in

RQ2 on different internal quality metrics. To do so, we first identify the refac-

toring pairs identified in RQ2 regardless their order found by the association

rule mining (for example, the two refactoring pairs “Move Attribute : Move

Method” and “Move Method : Move Attribute” are considered as a unique

co-occurent refactoring) leading to 10 unique co-occurrent refactorings. There-

9https://github.com/Arduino-IRremote/Arduino-IRremote
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Table 7: The most common co-occurrent refactorings

Refactoring item set #1 Refactoring item set #2 Support Confidence Lift Chi-square p-values Cramer’s V

Extract Method Rename Method 0.091 0.967 5.948 <0,05 0.487

Extract Method Move Method 0.074 0.900 3.471 <0,01 0.393

Extract Method Extract Interface 0.071 0.624 1.153 <0,01 0.488

Extract Interface Extract Method 0.071 0.757 1.153 <0,01 0.488

Extract Interface Move Attribute 0.073 0.546 2.278 <0,01 0.620

Extract Interface Move Method 0.061 0.595 1.575 <0,01 0.440

Inline Method Move Method 0.083 0.991 1.524 <0,01 0.389

Move Method Extract Interface 0.061 0.790 1.575 <0,01 0.440

Move Method Extract Method 0.074 0.868 2.471 <0,01 0.393

Move Method Inline Method 0.083 0.667 1.524 <0,01 0.389

Move Method Move Attribute 0.075 0.917 1.364 <0,01 0.429

Move Method Push Down Attribute 0.063 0.565 1.572 <0,05 0.504

Move Attribute Move Method 0.075 0.875 1.364 <0,01 0.429

Move Attribute Extract Interface 0.073 0.544 2.278 <0,01 0.620

Push Down Attribute Move Attribute 0.035 0.772 1.211 <0,05 0.500

Pull Up Method Move Attribute 0.084 0.548 6.203 <0,05 0.538

after, we compute for each co-occurent refactoring, its corresponding metric

values before and after each commit.

Table 8 show the metrics values before and after applying each co-occurrent

refactorings. Overall, the table reports 210 measurements on the experimental

group, i.e., 10 co-occurent refactorings × 21 quality metrics. The results in-

dicate that in 54.3% of the cases (114 out of 210 measurements as represented

in the while color in the table), refactoring have no statistically significant im-

pact on quality metrics, while it has a positive impact in 42.4% of the cases

(89 out of 210 as presented in blue) and a negative impact in 3.3% of the cases

(7 out of 210 as presented in red). In the following, we report and discuss the

obtained results for each quality metric along with real world examples from

our experiments.

Finding 3.1. Co-occurrent refactorings have no statistically significant im-

pact on quality metrics in 54.3% of the cases, a significant positive impact in

42.4% of the cases, and a significant negative impact in 3.3% of the cases.

4.3.1. Results for Coupling

• CBO: From Table 8, we observe that the co-occurrent refactoring (Move

Method : Push Down Attribute) is the most influential one which decreases
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the median value by 8 accompanied with a negligible effect size. Whereas,

(Move Method : Move Attribute) and (Extract Method : Rename Method)

co-occurrences tend to have less impact on the metrics with a median

improvement of 3 and 1, respectively, with a negligible effect size, each.

These results are in-line with the findings in RQ1 since the applied co-

occurrences contain either a Move Method or Extract Method refactoring.

The method-level move refactorings help organizing functionalities across

classes, and thus reduce dependencies between them which results in a re-

duced CBO. As for the (Extract Method : Rename Method) co-occurrence,

extracting a code fragment from methods can decrease import coupling as

it removes dependencies which are duplicated across these methods.

• RFC: As can be seen from Table 8, several co-occurrent refactorings do

impact the RFC metric. We observe that (Extract Method : Extract In-

terface), (Extract Interface : Move Method), (Extract Interface : Move

Attribute), (Extract Method : Move Method) and (Extract Method: Inline

Method) are the most influential co-occurrences that improve the RFC by

decreasing the median ranging from 11 to 12 accompanied with a medium

or small effect size depending on the co-occurrent refactoring. Moreover,

(Move Method : Push Down Attribute), (Move Attribute : Move And

Inline Method) and (Move Attribute : Pull Up Method) have shown to

improve RFC by a median ranging from 7 to 10 with a medium or small

effect size, while less impact is observed by (Move Method : Move At-

tribute) and (Extract Method : Rename Method) co-occurrences with a

median score ranging from 2 to 3 with a small or negligible effect size.

• FANIN, FANOUT and NOSI: From Table 8, we observe that the

FANIN, FANOUT, NOSI metrics did not experienced an impact with any

of the applied co-occurrent refactorings since the DiD model did not show

any statistically significant differences.

One of the examples that shows an improvement in coupling was found in the
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GymDiary application 10, in Commit #cb5a04c [67]. Specifically, the developer

applied the (Move Method : Move Attribute) co-occurrent refactoring involving

the TrainingAtProgress and BasicMenuActivityNew classes. This was real-

ized through moving the onChoose() method as well as the adapter and sp

attributes from the TrainingAtProgress class to the BasicMenuActivityNew,

resulting in its CBO dropping from 27 to 24 and its RFC from 34 to 29.

Finding 3.2. Co-occurrent refactorings have a significant positive impact

on coupling in terms of both CBO and RFC metrics, while no significant

impact was found on the FANIN, FANOUT and NOSI metrics. The co-

occurrences that most influence cohesion contain either moving or extracting

related refactorings (e.g., Move Method : Push Down Attribute).

4.3.2. Results for Cohesion

• LCOM: Table 8 shows that LCOM is improved when applying the (Ex-

tract Method : Rename Method) co-occurrent refactoring. The median

value significantly decreased by 2, even though it is accompanied by a

small effect size.

• TCC: We observe from Table 8 that (Extract Method : Extract Inter-

face) and (Move Method : Move Attribute) are the only two co-occurrent

refactorings that improve TCC by increasing the median value by 1 with

a negligible effect size, each.

An interesting example that shows the impact of the (Move Method : Move

Attribute) co-occurrent refactoring on cohesion was found in the Harris Cam11

application from Commit #2055774 [68] that involves moving the methods

showOptionMenu() and setOnClickOptionMenu() from the SlideMenuView

class to RightSlideMenuView and setOnClickOptionMenu classes, respectively.

Moreover, nine attributes used by the old methods (e.g., llSubContainer,

10https://github.com/nethergrim/GymDiary
11https://github.com/datakun/HarrisCam/
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ibFlashlight, ibGuideline, ibCameraSwitcher and ibIntervalWatch) are

moved to the new class. These co-occurrent refactorings improve cohesion by

decreasing the LCOM metric from 78 to 73 as well as decreasing the TCC metric

by 0.8.

Finding 3.3. Three co-occurrent refactorings tend to generally improve the

cohesion quality attribute in terms of the LCOM and TCC metrics including

“Move Method : Move Attribute”, “Extract Method : Extract Interface” and

“Extract Method : Rename Method”.

4.3.3. Results for Complexity

• WMC: We observe from Table 8 that (Move Method : Push Down At-

tribute) and (Extract Method : Extract Interface) are the most two in-

fluential co-occurrent refactorings that improve the WMC with a median

value by 6 and 5, respectively with a small effect size, each. Moreover,

(Extract Method : Rename Method), (Extract Method : Move Method)

and (Move Method : Inline Method), but with less impact with a median

value of 1 and a negligible effect size, each.

• EVG: As can be seen from Table 8, (Extract Method : Extract Inter-

face) and (Extract Method : Rename Method) are the most influential

co-occurrent refactorings that improve the median value by 3 and 2, re-

spectively accompanied with a small effect size. Furthermore, (Extract

Method : Move Method), (Move Method : Push Down Attribute), and

(Move Attribute : Pull Up Method), but with a median value of 1 and

negligible effect size, each.

• MaxNest: We notice from Table 8 that all the applied co-occurrent refac-

torings do improve the MaxNest metric but with a different impact level

where the median values ranging from 1 to 2 with a small or negligible

effect size.

• CC: As can be seen from Table 8, all the applied co-occurrent refactorings

do improve the CC metric. (Move Method : Move Attribute) is the most
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influential co-occurrence that improves the metric with a median value of

5 with a small effect size and the rest of co-occurrences improve the metric

with a median value of 1 and a negligible effect size, each.

As an illustrative example, we refer to the NAO-Com12 app, Commit #

4406253 [69] which implements an (Extract Interface : Extract Method) co-

occurrent refactoring. The NetworkDataSender interface is extracted from

the NAOConnector class and the method disconnect() is extracted from the

method run() in the NAOConnector class which clearly reduced the overall class

complexity complexity by decreasing the WMC from 38 to 30, EVG from 2 to

1, MaxNest from 8 to 4 and CC from 3 to 1.

Finding 3.4. Several co-occurrent refactorings tend to improve complexity

by decreasing the WMC, EVG, MaxNest and CC metrics. The most im-

pactful co-occurrent refactorings are “Extract Method : Extract Interface”

which typically help simplifying methods structure and/or reducing duplicate

code.

4.3.4. Results for Inheritance

• DIT: We notice from Table 8 that five from all the applied co-occurrent

refactorings do improve the DIT metric, including (Move Method : Push

Down Attribute), (Move Method : Inline Method), (Extract Interface :

Move Method), and (Extract Method : Move Method). However, we also

observe from the results in Table 8 that the (Move Attribute : Pull Up

Method) co-occurrence caused DIT metric to disprove by a median of 5

with a negligible effect size.

• NOC and IFANIN: From Table 8, we observe that both NOC and

IFANIN metrics have not been impacted by any of the applied co-occurrent

refactorings since the DiD model did not show any statistically significant

differences.

12https://github.com/NorthernStars/NAO-Com
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One of the examples that shows an improvement in inheritance was found

in a particular commit in the HIITMe application [70]. Specifically, the de-

veloper applied a Move Method and Push Down Attribute co-occurrence in the

DraggableView class. In particular, the initialise method as well as the

dragManager and ProgramNodeView attributes were moved from the DraggableView

class to the ExerciseView class. These changes resulted in inheritance im-

provement for the DraggableView class, with a drop of its DIT from an overly-

complex 9 to a more manageable 6.

Finding 3.5. Hierarchy-level and moving related co-occurrent refactorings

tend to improve the inheritance quality attribute in terms of DIT, while no

significant impact was found on the NOC and IFANIN metrics. The co-

occurrent refactorings that most influence inheritance are “Move Method :

Push Down Attribute” and “Move Attribute : Move And Inline Method”.

4.3.5. Results for Design Size

• LOC: As shown in Table 8, all the applied co-occurrences improve the

LOC metric. The most influential co-occurrence is (Move Method : Push

Down Attribute) which decrease the median value by 25 with a medium ef-

fect size. Moreover, (Extract Interface : Move Attribute), (Move Attribute

: Move And Inline Method) and (Move Attribute : Pull Up Method) have

shown to improve LOC by a median score of 19 with a medium effect size,

while less impact is observed by the rest of co-occurrences.

• BLOC: We observe from Table 8 that seven out of all the co-occurrences

improve the BLOC metric. The most influential ones are (Move Attribute

: Move And Inline Method) and (Move Attribute : Pull Up Method) which

decrease the median value by 13 and 12, respectively with a medium ef-

fect size, each. Furthermore, (Move Method: Inline Method), (Extract

Method: Move Method), (Extract Interface : Move Method), (Extract In-

terface : Move Attribute) and (Move Attribute : Push Down Attribute)

tend to significantly improve BLOC by a median value ranging from 4
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to 6, each with a small or negligible effect size. However, we also notice

from the results in Table 8 that (Move Method : Push Down Attribute)

co-occurrence caused BLOC metric to disprove by a median of 6 with a

medium effect size.

• CLOC: As can be seen from Table 8 also CLOC is not impacted by any

of the applied co-occurrences. This result indicates that developers do not

seem to pay attention to comments in the code during their refactoring

tasks.

• STMTC: As shown in Table 8, 9 out of all co-occurrences improve the

metric with a median value ranging from 1 to 3. However, (Extract Method

: Rename Method) co-occurrence deteriorate the metric by increasing the

median value of 3 accompanied with a negligible effect size.

• NIM:We observe from Table 8 that four from all the applied co-occurrences

including (Move Attribute : Pull Up Method), (Move Attribute : Move And

Inline Method), (Move Method : Move Attribute) and (Extract Interface:

Move Attribute) do improve the NIM metric with a median value ranging

from 1 to 2 with a negligible effect size. However, we notice that (Ex-

tract Method :Extract Interface) and (Extract Method : Rename Method)

co-occurrences disprove the metric by increasing the median by 2 and 1,

respectively with negligible effect size.

• NIV: From Table 8, we observe that (Extract Method : Extract Interface)

and (Extract Move : Move Method) are the most influential co-occurrences

which decrease the median value by 20 and 16, respectively with a medium

effect size. Moreover, (Extract Interface : Move Method) tend also to

improve NIV with a medium impact of 8 with a small effect size. Whereas,

the rest of co-occurrent refactorings tend to have less impact on the metrics

with a median value ranging between 1 and 2 with a negligible effect size.

However, we notice that (Extract Method : Rename Method) co-occurrence

disprove the metric by increasing the median by 5 with negligible effect
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size.

• VQTY: As indicated in Table 8, the co-occurrent refactorings (Move

Method : Push Down Attribute), (Move Attribute : Pull Up Method) and

(Move Method : Inline Method) are the most influential that improve the

VQTY with a median ranging from 5 to 6 accompanied with a small effect

size.

As an illustrative example, we refer to the ShaderEditor13 app, Commit

#bb324ba [71] which implements a (Move Method : Inline Method) co-occurrent

refactoring. The developer moves the newDropDownView() method from the

class ShaderAdapter to the class ShaderSpinnerAdapter and then inlines the

method shaderMenuItemSelected() with the method onOptionsItemSelected().

These co-occurrent refactorings clearly resulted in a reduced method size with

a drop of its LOC from 80 to 72, its STMTC from from 31 to 29, its NIM from

18 to 16, its NIV from 25 to 19 and its VQTY from 42 to 35.

Finding 3.6. Most co-occurrent refactorings tend to reduce the design

size metrics except for the CLOC which indicates that developers do not

seem to pay attention to comments in the code during their refactoring tasks.

The most influential co-occurrent refactorings are “Extract Interface : Move

Method”, “Move Method : Inline Method” and “Move Attribute : Pull Up

Method” which typically help reducing duplicate code, or moving code be-

tween classes, hence improving the design size.

In Table 9, we compare the impact of single refactorings (findings of RQ1)

against co-occurrent refactorings (findings of RQ3) in improving or worsening

the quality attributes. To do so, for each attribute, we identified the metrics

that are impacted by at least one single or co-occurrent refactorings.

In summary, we observed some consistency of results obtained for both sin-

gle and co-occurrent refactorings while more metrics tend to deteriorate with

13https://github.com/markusfisch/ShaderEditor
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co-occurrent refactorings. Such results contrast with the assumption that the

metrics changes are due to chance and confirms that regardless of the employed

refactoring strategy (i.e., single or co-occurrent refactorings), refactorings gen-

erally tend to have an impact on these metrics.

Table 9: Comparison of the results found for single refactorings (RQ1) versus co-occurrent

refactorings (RQ3).

Impacted metrics

Quality attribute Single refactorings (RQ1) Co-occurrent refactorings (RQ3)

Cohesion LCOM LCOM, TCC

Coupling CBO, RFC, FANIN, FANOUT CBO, RFC

Complexity All the metrics All the metrics

Inheritance DIT, NOC, IFANIN DIT

Design size LOC, STMTC, NIM, NIV, VQTY LOC, BLOC, STMTC, NIV, NIM, VQTY

5. Implications and Discussions

5.1. Implications for researchers

Further exploit quality metrics and refactoring in mobile software

development. The existing literature discusses different automatic refactor-

ing approaches that help practitioners in detecting anti-patterns or code smells.

More recently, Baqais and Alshayeb [72] showed that there is an increase in the

number of studies on automatic refactoring approaches and researchers have

begun exploring how machine learning can be used in identifying refactoring

opportunities. Since the features play a vital role in the quality of the obtained

machine learning models, this study can help determine which metrics can be

used as effective features in machine learning algorithms to accurately predict

refactoring opportunities at different levels of granularity (i.e., , class, method,

field), which can assist developers in automatically making their decisions. For

example, using the most impactful metrics as a feature to predict whether a

given piece of code should undergo a specific refactoring operation make devel-

opers more confident in accepting the recommended refactoring. Such knowl-
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edge is needed as, in practice, the built model should require as little data as

possible.

Provide knowledge based on current Android applications devel-

opment practices. There is a growing interest on the detection [73–76], prior-

itization [75, 77–79], and recommendation [15, 73, 80–82] of refactoring in both

academia and industry. Researchers are encouraged to explore such interests to-

gether with the practice of refactoring. Several new research opportunities can

be explored by devising refactoring tools dedicated for Android applications

to incorporate co-occurrent refactorings instead of only focusing on individual

refactoring. This is important in the context of mobile applications since such

applications need to evolve quickly to meet users and market needs. Indeed,

our study showed that over 60% of refactoring commits contain two or more

refactorings which reveals that co-occurrent refactorings are common practice.

Furthermore, these refactorings significantly improve quality metrics. Moreover,

researchers should look into the reasons why developers apply only specific refac-

toring types and evaluate their perceptions (i.e., why they apply refactoring)

in the context of mobile applications.

Control the impact of refactoring. Although, our results showed that a

limited number of metrics deteriorate after applying single and/or co-occurrent

refactorings, this study identified a research opportunity to control the impact

of refactoring on mobile applications evolution. Thus, when performing refac-

toring, it is also necessary to assess its impacts. For instance, based on our

results, researchers could evaluate most commonly used refactorings by mobile

applications developers that affect negatively the quality and investigate the rea-

sons behind it while accommodating developers with appropriate quality-aware

refactoring recommendation tools especially for mobile applications.

Further investigate co-occurrent refactorings. Previous empirical stud-

ies reported that Extract Method and Rename Method are the most common

refactoring types applied by developers [83]. These studies may give an intuition

that developers tend to most commonly apply single refactorings. However, this

is not the case since our results show that developers tend to most commonly
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apply co-occurrent refactorings where 60% of commits contain multiple refac-

toring and 16 refactoring pairs tend to co-occur together (e.g., Extract Method :

Rename Method). However, it is still unclear if these co-occurrent refactorings

are associated to the same task (e.g., decrease code complexity). Therefore,

there is a need to further investigate the intention of Android developers when

they apply co-occurrent refactorings.

Further investigate refactoring impact and developer intention be-

hind refactoring application. Our findings showed that some quality metrics

deteriorate after the application of certain single and co-occurring refactorings.

However, we cannot conclude from this that developers are misapplying refactor-

ings for two reasons. Firstly because it is known that software metrics frequently

disagree on whether the application of a refactoring is beneficial or not [11], so

the observed deterioration may be due to weaknesses in the metrics themselves

— certainly software metrics cannot be taken as ground truth measures of ac-

tual quality. Secondly, because we do not know the intention of the developer

when they apply a refactoring. Indeed, several recent works have shown that

developers tend not to explicitly mention their intention when documenting

refactoring related code changes, including refactoring documentation in com-

mit messages [10, 42, 84–86], refactoring documentation in code review [87, 88],

as well as refactoring documentation in issue handling [89]. Therefore, as future

work it is important to further investigate why some quality metrics deteri-

orate after refactoring based on the intention of developers when they apply

single or co-occurrent refactorings. That is, we speculate that Android devel-

opers might be applying sequences of individual or co-occurrent refactoring in

different commits (consecutive or not). Looking at the improvement in each

commit might not reflect the actual whole improvement; unless combining the

improvements together. We encourage future works to explore tracking related

refactoring operations over time in different refactoring commits to investigate

this phenomenon more deeply.
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5.2. Implications for tool builders

Need for tools that recommend co-occurrent refactorings for An-

droid developers. Our results showed 16 common co-occurrent refactorings in

practice and their impact on software quality metrics in Android applications.

This can be useful for the next generation of refactoring recommendation tools

to support co-occurrent multi-purpose refactoring. Moreover, these tools can

inform about the side effects and allow the developer to choose the co-occurrent

refactorings which may be applied and the side effects to be minimized or re-

moved.

Need for Android-specific refactoring tools. Our findings on the im-

pact of refactoring on quality attributes/metrics can help build practical and

customized refactoring recommendation tool for Android developers. For ex-

ample, given the relatively small size and rapid evolution and release cycles of

mobile applications, it is relevant to recommend refactoring opportunities for

classes suffering from specific quality aspects, e.g., coupling, complexity, etc.

Need for tools that predict the effects of refactoring. The main

goal of our empirical study is to investigate the impact of refactoring on quality

metrics (i.e., decay or improvement). Our results indicate that when refactor-

ing (i.e., single and co-occurrent refactoring) affects the metrics it generally

improves them. In many cases refactoring has no significant impact on the

metrics, whereas some metrics are disapproved after applying some refactoring

types. Therefore, this is an opportunity to propose and/or improve refactoring

tools by early predicting and evaluating the effects of refactoring before apply-

ing it. Such tools can also allow developers to evaluate different refactoring

alternatives based on their quality improvement.

5.3. Implications for practitioners.

Android developers should pay attention to the quality of their

application code. Our results indicate that developers sometimes apply refac-

toring operations that do not improve the structural quality of the application.

This is particularly the case for the cohesion metric LCOM. While LCOM tends
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to be very volatile under refactoring as also shown in prior works [11, 90], these

results indicate that there is a risk that developers degrade application structural

quality while performing refactoring changes. Given that Android applications

should evolve quickly to add new user requirements, fix bugs or adapt to new

technological changes, such refactorings may increase technical debt and thus

cause developers to invest additional maintenance effort in the future in order to

fix quality issues in their applications. Hence, developers need to pay attention

to their refactoring edits.

5.4. Implications for educators.

Learn refactoring best practices. Teaching the next generation of engi-

neers best practices on refactoring and its impact on software quality in mobile

applications and in software development, in general. Educators can use our

study results and our dataset [19] to teach and motivate students to follow

best refactoring practices while avoiding refactoring changes that may cause

regression in their applications. In particular, our real world dataset of 84,841

refactorings from 800 Android applications, represents a valuable resource that

could enable the introduction of refactoring to students using a “learn by exam-

ple” methodology, illustrating best refactoring practices that should be followed

and bad practices to be avoided.

6. Threats to validity

This section discusses threats to validity of the study.

Threat to internal validity. The accuracy of the refactoring detection tool,

RefactoringMiner, can represent a threat to internal validity because it may

miss the detection of some refactorings. However, previous studies report that

Refactoring Miner has high precision and recall scores (98% and 87%, respec-

tively) compared to other state-of-the-art refactoring detection tools [37, 91],

which gives us confidence in using the tool. Furthermore, RefactoringMiner

identifies some co-occurrent refactorings such as Extract and Move Method, and

43



Move and Rename Method. We excluded those refactorings from our study as

they might bias the final results while focusing on single and co-occurrent refac-

toring. Hence, further deep investigation of co-occurrent refactoring would be

interesting as future work. The set of metrics used in this study also represents

a threat to validity, because it may not capture all relevant properties of the

internal quality attributes. To mitigate this threat, we did not choose a random

set of metrics. We chose metrics that assess different properties of each internal

quality attribute [26, 28, 92]. Another criterion was used to choose our set of

metrics that are detailed in Section 2.2.

Threats to construct validity. A potential threat to construct validity is re-

lated to commit-level changes. Similar to the work of Pantiuchina et al. [56],

our study does not exclude tangled commits [93], i.e., commits in which devel-

opers perform changes related to different tasks and one of these tasks could be

related to refactoring. To reduce the impact of the noise resulting from tangled

commits, we employed the Difference-in-Difference (DiD) model where a treat-

ment group (commits with refactoring) and a control group (commits without

refactoring) are compared. We did not consider filtering out such changes in

this study as tracing back and separating changes in a single commit is an error

prone and non-trivial task.

Threats to conclusion validity. Unlike other works on the impact of refactor-

ing on quality metrics [6, 10, 13, 14], we employed the DiD method to compare

the changes in quality metrics between a treatment and control group and fil-

tered our dataset to choose. Furthermore, we used the non-parametric Wilcoxon

rank-sum test and the Cliff’s effect size, that do not make assumptions on the

underlying data. Another threat to conclusion validity is concerned with the

causal relationship between the treatment and the outcome. The algorithm

used to identify co-occurrentrefactorings is important. In fact, different results

may be obtained with different other algorithms used in recent studies [23, 94].

Thus, we need to evaluate in our future work the impact of different algorithms

on the quality of the results.

Threat to external validity. In this work, we investigate the impact of refac-
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toring on quality metrics using a large sample of 800 open source Android ap-

plications written in Java. In addition, we have only studied the mobile applica-

tions of a single mobile platform (i.e., the Android Platform). Thus, we cannot

generalize our results to other open source or commercial mobile applications

or to other technologies.

7. Related work

This section reports the literature related to different studies on (i) the iden-

tification and detection of refactoring activities, and (ii) the impact of single and

co-occurrentrefactorings refactoring performed by developers on code quality.

7.1. Refactoring: methods and tools

Fowler defined the first refactoring catalog that contains 72 refactoring op-

erations and specified a guide containing information on when and how to apply

them [21]. Later, Simon et al. [95] presented a generic approach to generate visu-

alizations that supports developers to identify bad smells and propose adequate

refactorings. They focus on use relations to propose move method/attribute and

extract/inline class refactorings. They define a distance-based cohesion metric,

which measures the cohesion between attributes and methods with the aim of

identifying methods that use or are used by more features of another class than

the class that they belong to, and attributes that are used by more methods

of another class than the class that they belong to. The calculated distances

are visualized in a three-dimensional perspective supporting the developer to

manually identify refactoring opportunities.

Several researchers have used messages attached to commits into a ver-

sion control as indicators of refactoring activity. Stroggylos and Spinellis [14]

searched words stemming from the verb refactor, such as refactoring or refac-

tored, to identify refactoring-related commits. Ratzinger et al. [96] also used a

similar keyword-based approach to detect refactoring activity between a pair of

program versions in order to identify whether a transformation contains refac-
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toring. The authors identified refactorings based on a set of keywords detected

in commit messages (e.g., refactor, restruct, clean, etc).

While current studies collect refactorings based on mining developers docu-

mentation, or release-based static analysis tools, we use a fine grained detection

of refactoring based on RefactoringMiner to reduce any bias towards imprecise

collection of refactorings.

7.2. Empirical studies on the impact of single refactorings

Various research works attempted to quantitatively evaluate whether refac-

toring indeed improves quality in traditional software systems. Alshayeb et

al. [12] investigated the impact of refactoring operations on five quality at-

tributes, namely adaptability, maintainability, understandability, reusability,

and testability. Their results highlight that benefits brought by refactoring

operations on some code classes are often counterbalanced by a decrease of

quality in some other classes. Pantiuchina et al. [56] explored the correlation

between code metrics and the quality improvement explicitly reported by de-

velopers in commit messages. The study shows that quality metrics sometimes

do not capture the quality improvement documented by developers. Similarly,

AlOmar et al. [10] conducted a large scale empirical study on open-source

java projects to investigate the extent to which refactorings impact on qual-

ity metrics match with the developers perception. The study results indicate

that quality metrics related to cohesion, coupling and complexity capture more

developer intentions of quality improvement than metrics related to encapsula-

tion, abstraction, polymorphism and design size. Further, research particularly

in resability refactorings [41, 42] examined 1,828 projects and 154,820 commits

that modified Java files. The authors considered how reusability changes af-

fect software quality metrics and how what kinds of refactoring operations were

performed during reusability changes.

Tahvildari & Kontogiannis [97] analyzed the association of refactorings with

a possible effect on maintainability enhancements through refactorings. They

use a catalogue of object-oriented metrics as an indicator for the transformations
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to be applied to improve the quality of a legacy system. The indicator is achieved

by analysing the impact of each refactoring on these object-oriented metrics. Ó

Cinnéide et al. [11] investigated the impact of refactoring on five popular cohe-

sion metrics using eight Java desktop systems. Their results demonstrate that

cohesion metrics disagree with each other in 55% of cases. Furthermore, Geppert

et al. [98] empirically investigated the impact of refactoring on changeability.

They considered three factors for changeability: customer reported defect rates,

effort, and scope of changes. Szoke et al. [99] performed a study on five software

systems to investigate the relationship between refactoring and code quality.

They show that small refactoring operations performed in isolation rarely im-

pact software quality. On the other side, a high number of refactoring operations

performed in block helps in substantially improving code quality.

Stroggylos and Spinellis [14] analyzed the version control system logs of sev-

eral popular open source software systems to determine the impact refactorings

have on software metrics, and found that refactoring did not cause the met-

rics to improve. However this work relied upon the use of commit messages

to detect refactorings, an approach that was later discredited [38]. Kataoka et

al. [100] studied the refactoring effect on various coupling metrics, comparing

the metrics before and and after the refactorings Extract Method and Extract

Class, which were performed by a single developer in desktop C++ programs.

More recently, Cedrim et al. [13] conducted a longitudinal study of 25 desktop

projects to examine the impact of refactoring on software quality. The results

indicate that only 2.24% of refactorings removed code smells while 2.66% of the

refactorings introduced new ones. For the sake of clarity, Table 10 provides a

summary of the existing works.

Recently, Hamdi et al. [16] propose a first analysis on the impact of refactor-

ing on quality metrics in the context of Android applications. They mined 300

open-source applications containing 42,181 refactoring operations in total. They

determined the effect each refactoring had upon the 10 chosen software quality

metrics, and employed the difference-in-differences (DiD) model to determine

the extent to which the metric changes brought about by refactoring differ from
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Table 10: A summary of the literature on the impact of refactoring on software quality

attributes.

Study Year Software Metric Internal Quality Attribute
Refactoring Level

Class Method Field

Simon et al. [95] 2001 Cohesion measures Cohesion Yes Yes Yes

Kataoka et al. [100] 2002 Coupling measures Coupling Yes Yes No

Tahvildari & Kontogiannis [97] 2004
LCOM / WMC / RFC / NOM Inheritance / Cohesion / Coupling / Complexity

Not mentioned
CDE / DAC / TCC

Geppert et al. [98] 2005 Not mentioned Not mentioned Not mentioned

Stroggylos & Spinells [14] 2007 CK / Ca / NPM Inheritance / Cohesion / Coupling / Complexity Not mentioned

Alshayeb [12] 2009 CK / LOC / FANOUT Inheritance / Cohesion / Coupling / Size Yes Yes Yes

Ó Cinnéide et al. [11] 2012 LSCC / TCC / CC / SCOM / LCOM5 Cohesion Yes Yes Yes

Szoke et al. [99] 2014
CC / U / NOA / NII / NAni

Size / Complexity Not mentioned
LOC / NUMPAR / NMni / NA

Cedrim at al. [13] 2016
LOC / CBO / NOM / CC

Cohesion / Coupling / Complexity Yes Yes Yes
FANOUT / FANIN

Pantiuchina et al. [56] 2018
LCOM / CBO / WMC / RFC

Cohesion / Coupling / Complexity Yes Yes Yes
C3 / B&W / SRead

AlOmar et al. [10] 2019

CK / FANIN / FANOUT / CC / NIV / NIM

Inheritance / Cohesion / Coupling / Complexity Yes Yes YesEvg / NPath / MaxNest / IFANIN

Size / Polymorphism / Encapsulation / AbstractionLOC / CLOC / CDL / STMTC

AlOmar et al. [42] 2020 CK / LOC / CC Inheritance / Cohesion / Coupling / Complexity / Size Yes Yes Yes

Hamdi et al. [16] 2021 CK / LOC / VQTY Inheritance / Cohesion / Coupling / Complexity / size Yes Yes Yes

AlOmar et al. [41] 2021

CK / LOC / CC / NPATH

Inheritance / Cohesion / Coupling / Complexity / Size Yes Yes YesMaxNest / FANIN / FANOUT / CLOC

STMTC / CDL / NIV / NIM / IFANIN

This work

CK / FANIN / FANOUT / CC / NIV / NIM

Inheritance / Cohesion / Coupling / Complexity Yes Yes YesEvg / MaxNest / IFANIN / TCC / VQTY

SizeLOC / CLOC / BLOC / STMTC / NOSI

the metric changes in non-refactoring commits. The results show that metrics

can be a strong indicator for refactoring activity, regardless of whether it im-

proves or degrades these metric values. In particular, some refactoring types

yielded a broad improvement in several metric values. LCOM stood out as the

least consistent metric, improving for some refactoring types and disimproving

for others. For the non-refactoring commits, the metrics exhibit no significant

change, other than the design size metrics.

7.3. Empirical studies on the impact of co-occurrent refactorings

Many studies in traditional software systems have investigate the effect of

co-occurrent refactorings. Vinicius Soares et al. [22] present a quantitative study

aimed at understanding the most common incomplete co-occurrent refactorings

and how they impact internal quality attributes. They selected five software

projects of different domains and a set of common refactoring types. Then,

they collected incomplete co-occurrent refactorings for Feature Envy removal
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or God Class removal and computed the frequency of incomplete co-occurrent

refactorings according to the refactoring types constituting each co-occurrent

refactoring. Then, they evaluated the effect of those incomplete co-occurrent

refactorings on 11 code metrics that are used to capture four internal qual-

ity attributes. They found that incomplete co-occurrent refactorings with at

least one Extract Method are often (71%) applied without Move Methods on

smelly classes. They have also found that most incomplete co-occurrent refactor-

ings (58%) tended to at least maintain the internal structural quality of smelly

classes, thereby not causing more harm.

Also, Sousa et al. [23] investigate co-occurrent refactorings. They mined the

commit history of 48 GitHub software projects to identify the characteristics

of different categories of co-occurrent refactorings, and their impact on either

removing or introducing smells. They found that many smells are introduced in

a program due to incomplete co-occurrent refactorings. Also, they found that

111 patterns of co-occurrent refactorings frequently introduce or remove certain

smell types.

Bibiano et al. [101] present a large-scale quantitative study in 57 open and

closed software projects understand the usual co-occurrent application from two

perspectives: characteristics that typically constitute a co-occurrent refactoring,

and the co-occurrent impact on smells. They analyzed 19 smell types and 13

code refactorings. They found that most co-occurrent refactorings in practice

occur entirely within one commit (93%), affect multiple methods (90%) and co-

occurrent refactorings mostly end up introducing (51%) or not removing (38%)

code smells.

We observe from the existing literature that most studies focus on desktop

applications while few works have focused on mobile applications. Furthermore,

existing studies are limited to only a small number of quality metrics, or/and

few refactoring types. Finally, one of the limitations in the state-of-the-art

studies is that they do not partition their dataset to consider single-refactoring

commits and multi-refactoring commits separately. Such code changes can add

more noise to the analyzed quality metrics values, and impact the final outcome
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of the metrics analysis. This paper extends our previous work [16] and is differ-

ent from other papers cited in this section. In particular, we focus on Android

applications, include more quality metrics in our analysis, more refactoring op-

erations and more Android applications. Moreover, we filtered our dataset to

consider commits containing only one refactoring. In our study, we adopt a

causal inference based on the DiD model [17] to better assess the impact of

refactoring on quality metrics and provide greater confidence that the observed

metric variation is indeed due to refactoring.

8. Conclusion and Future Work

In this paper we investigated the impact of refactoring on quality metrics in

Android applications. To ensure that we have high quality-data we mined 800

open-source applications containing 84,841 a total of refactoring operations. We

first analyze the impact of single refactoring operations on 21 common quality

metrics using the Difference-in-Difference (DiD) statistical model. Then, we

investigated the most common co-occurrent refactorings, and their impact on

quality metrics. Our findings reveal that when single refactorings affect the

metrics, they generally improve them. However, in many cases refactoring has

no significant impact on quality metrics. Moreover, we found that co-occurrent

refactorings are quite prevalent in Android applications. Overall, 60% of the

total number of refactoring commits contain multiple refactoring types, and 16

co-occurrent refactoring pairs tend to occur very often, where many of them have

a positive impact on quality metrics. Our results can have several important

implications for researchers, tool builders and educators.

We foresee several possible directions for future work. Firstly, we plan to

investigate the impact of co-occurrent refactoring on code smells, in particular

to assess the extent to which they are effective at removing smells. Secondly,

we consider extending our study to commercial Android applications written

with different programming languages to better generalize our results. Finally,

we plan to conduct a qualitative investigation through a survey with Android
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developers to better understand their intuition behind refactoring activities in

the context of Android applications development.
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[11] M. Ó Cinnéide, I. Hemati Moghadam, M. Harman, S. Counsell, L. Tratt,

An experimental search-based approach to cohesion metric evaluation,

Empirical Software Engineering 22 (1) (2017) 292—-329.

[12] M. Alshayeb, Empirical investigation of refactoring effect on software qual-

ity, Information and software technology 51 (9) (2009) 1319–1326.

[13] D. Cedrim, L. Sousa, A. Garcia, R. Gheyi, Does refactoring improve soft-

ware structural quality? a longitudinal study of 25 projects, in: 30th

Brazilian Symposium on Software Engineering, 2016, pp. 73–82.

[14] K. Stroggylos, D. Spinellis, Refactoring–does it improve software quality?,

in: International Workshop on Software Quality (WoSQ), 2007, pp. 10–10.

[15] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria

code refactoring using search-based software engineering: An industrial

case study, ACM Transactions on Software Engineering and Methodology

(TOSEM) 25 (3) (2016) 1–53.

[16] O. Hamdi, A. Ouni, E. A. AlOmar, M. O. Cinnéide, M. W. Mkaouer, An
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