Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/XXXX

ARTICLE TYPE

Behind the Scenes: On the Relationship Between Developer Experience
and Refactoring

Eman Abdullah AlOmar*! | Anthony Peruma® | Mohamed Wiem Mkaouer® | Christian D.

Newman? | Ali Ouni®

!Department of Software Engineering,

Rochester Institute of Technology, New Summary
York, USA

2Department of Software Engineering, Refactoring is widely recognized as one of the efficient techniques to manage technical
ROCI}:CSt;rAInStith of Technology, New debt and maintain a healthy software project through enforcing best design practices, or
York, U

3Department of Software Engineering, coping with design defects. Previous refactoring surveys have shown that code refactoring
Eocile;t;;m“itute of Technology, New activities are mainly executed by developers who have sufficient knowledge of the system’s

ork,

“Department of Software Engineering, design, and disposing of leadership roles in their development teams. However, these sur-
ROCEEStgrAInSﬁtUte of Technology, New veys were mainly limited to specific projects and companies. In this paper, we explore the
York, U

5Department of Software Engineering generalizability of the previous results by analyzing 800 open-source projects. We mine
an I:f’ ETS Montreal, Montreal, their refactoring activities, and we identify their corresponding contributors. Then, we asso-

anada
ciate an experience score to each contributor in order to test various hypotheses related to
Correspondence

whether developers with higher scores tend to 1) perform a higher number of refactoring
*Eman Abdullah AlOmar. Email:

eman.alomar@mail.rit.edu operations 2) exhibit different motivations behind their refactoring, and 3) better document

their refactoring activity. We found that (1) although refactoring is not restricted to a sub-
set of developers, those with higher contribution score tend to perform more refactorings
than others; (2) while there is no correlation between experience and motivation behind
refactoring, top contributed developers are found to perform a wider variety of refactoring
operations, regardless of their complexity; and (3) top contributed developer tend to doc-
ument less their refactoring activity. Our qualitative analysis of three randomly sampled
projects show that the developers who are responsible for the majority of refactoring activ-
ities are typically in advanced positions in their development teams, demonstrating their

extensive knowledge of the design of the systems they contribute to.

KEYWORDS:
Software maintenance and evolution, Mining software repositories, Software refactoring,

Developer experience, Quality

1 | INTRODUCTION

According to the Consortium for Information & Software Quality, poor software quality costs the United States economy over 2 trillion, in 2020,
due to functional software failures, poor quality of existing legacy systems, and unsuccessful projects deIiveryEl Therefore, refactoring was born
along with code reviews, as a natural response to be the quality safeguard and the backbone of managing technical debt?. The main goal of

refactoring is to restructure the design and the source code to be more efficient and easier to comprehend. It is key in reducing the cost maintaining

Ihttps:/www.it- cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm

https://www.it-cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm

2 | AlOmar et al

and evolving software, as it makes the process of debugging smoother. While it is not intended as a bug fix practice, it has been found to reduce
software proneness to defects,

The spectrum of research exploring the practice of refactoring covers a wide variety of dimensions, such as the identification of refactoring
opportunities®42 recommendation of adequate refactoring operations¢Z8211011111213/ detection of applied refactorings1422126l studying the impact
of refactoring on quality2221812 the reasons as to why developers refactor their code?%2l etc. However, little is known about how the level
of experience influences developer refactoring activities. Nevertheless, developer experience directly impacts their ability to estimate software
quality, and therefore, their ability to determine the appropriate refactoring strategy that needs to be deployed. Moreover, developers’ knowledge
of the system’s structure and sub-components varies, and so is their privilege to access and modify them. This paper aims to start the discussion
around the importance of considering the developer’s experience as part of proposing solutions related to refactoring, since their applicability
depends on the perception and privilege of the developers in charge.

In our previous work#2, we explored the hypothesis of whether developers with more contribution are most likely to be responsible for a higher
number of refactoring activities. This study extends our prior investigation by exploring two more hypotheses: 1) We argue whether developers
with higher contribution are most likely to have different motivations to refactor code; and 2) we investigate whether developers top contributors
correlates with better documentation of refactorings. Our first hypothesis is driven by the assumption that top contributed developers are most
likely to perform more complex refactorings. Our second hypothesis argues that top contributed developers may provide clearer documentation
of their code changes, as a reflection of better understanding the value of proper documentation. Our study is driven by the following research
questions:

e RQ1. What is the distribution of experience among developers that perform refactorings?

To answer this research question, we start with mining refactorings from 800 well-engineered projects. We identify the subset of authors
who were involved in these refactoring activities along with all project contributors. We estimate their contribution in the project by mea-
suring their developer commit ratio score. We compare the scores of developers whose commits witnessed refactorings with the scores of

developers whose commits had no refactorings.

e RQ2. Do developers with more contribution refactor code more often?

The rationale behind this question is investigating whether refactoring activities tend to be performed by a subset of developers. To answer
this question, we split developers, based on their experience score, into two sets, where the first set contains the top 5% of developers
with high contribution scores while the second set gathers the remaining contributors. Then we compared the count of the refactorings
performed by each set. We further randomly sampled three projects, and we extracted their top contributors with respect to refactoring

both production and test code.

o RQ3. What triggers developers to refactor the code?

This research question investigates what motivates developers to refactor their code, by identifying the type of development tasks in
which refactorings were interleaved, e.g., updating a feature, debugging, etc. We verify if developer’s experience correlates with a specific

motivation. We also breakdown our analysis per type of refactoring operation performed.
e RQ4. Does developer's experience influence the quality of refactoring documentation?
Answering this question helps to explore what type of refactoring contributors frequently document refactoring activities in their commit

messages, and whether experience plays a role in providing a better documentation of performed refactoring operations.

The remainder of this paper is organized as follows. Section [2] discusses the related work. Section [3] outlines our experimental methodology
in collecting the necessary refactoring data for the experiments that are discussed afterward in Section[4] The research implication is discussed
in Section 5] Section [f] gathers potential limitations to the validity of our empirical analysis before concluding and describing our future work
directions in Section[Z}

2 | RELATED WORK

We divided the related work section into two areas- studies that investigated the relationship of refactoring and developer experience, and studies
that investigated refactoring documentation in the commit messages.

AlOmar et al 3

TABLE 1 Existing works on refactoring & developer experience

Study Year Subject Approach Source of Info. Main Finding

Tsantalis et al.28 2013 3 0SS Manual Analysis Refactoring Commits Refactoring contributors has the management
role within the project

Kim et al.2% 2014 328 developers Survey Refactoring Commits Developer experience needs to be examined
as it might be the cause for changes of module
dependencies

AlOmar et al.22 2020 800 0SS DCR Calculation Refactoring Commits Higher experience developers perform the

majority of refactoring

2.1 | Refactoring & Developer Experience

A couple of refactoring studies have pointed out that refactoring is typically performed by experienced developers: Tsantalis et al.%3 performed
a multidimensional empirical study on refactoring activities that included: the proportion of refactoring operations performed on production and
test code, the most active refactoring contributors, the relationship between refactorings with releases and testing activity, and the purpose of
the applied refactorings. With regard to developer experience, the authors found that the top refactoring contributors had a management role
within the project. In another study, Kim et al.2% surveyed 328 professional software engineers at Microsoft to investigate when and how they do
refactoring. They found that developers with different expertise levels experienced five risk factors involved in refactoring, namely, regression bugs,
code churns, merge conflicts, time taken from other tasks, the difficulty of performing code reviews after refactoring, and the testing cost. They also
investigated the relationship between the refactoring effort and reduction of the number of inter-module dependencies and after release defects.
They reported that other factors, such as developer experience, need to be examined as the changes to the number of module dependencies
and post-release defects might be caused by such factors other than refactoring. The findings of these studies232423 jndicate that experience
plays a significant role in the execution of refactoring, yet they were both limited to developer surveys without any concrete evidence from the
source code, and they were also limited to a few projects. More recently, AlOmar et al.22 explored the generalizability of Tsantalis et al. study23 by
analyzing 800 open-source projects, finding that developers with higher contribution perform the majority of refactoring activities than others. A
summary of the related studies is provided in Table[T]

2.2 | Refactoring Documentation

TABLE 2 Existing works on refactoring identification

Study Year Purpose Approach Source of Info. Ref. Patterns
Stroggylos & Spinellis2! 2007 Identify refactoring commits ~ Mining commit logs General commits 1 keyword

Ratzinger et al.2Z 2007 & 2008 Identify refactoring commits ~ Mining commit logs General commits 13 keywords
Murphy-Hill et al.28 2012 Identify refactoring commits Ratzinger’s approach General commits 13 keywords
Soares et al.2? 2013 Analyze refactoring activity Ratzinger's approach General commits 13 keywords

Manual analysis
Dynamic analysis

Kim et al 24 2014 Identify refactoring commits Identifying refactoring branches Refactoring branch Top 10 keywords
Mining commit logs
Zhang et al. 20 2018 Identify refactoring commits ~ Mining commit logs General commits 22 keywords
AlOmar et a| 818283 2019 & 2020 Identify refactoring patterns Detecting refactorings Refactoring commits 87 & 513 keywords & phrases

Extracting commit messages

As shown in Table a line of works have focused on identifying refactoring activities via commit messages analysis. Stroggylos & Spinellis2®
searched for the term ‘refactor’ to study refactoring-related commits. Ratzinger et al.2Z also opted for a similar keyword-based approach to detect

refactoring activity in the commit messages. They identified the following 13 terms in their search approach: ‘refactor’, ‘restruct’, ‘clean’, ‘not used,,

4 | AlOmar et al

‘unused’, ‘reformat’, ‘import’, ‘remove’, ‘replace’, ‘split, ‘reorg’, ‘rename’, and ‘move’. Later, Murphy-Hill et al. %8 replicated Ratzinger’s experiment in two
open source systems using Ratzinger's 13 keywords. They conclude that commit messages are unreliable indicators of refactoring activities. This is
due to the fact that developers do not consistently report/document refactoring activities in the commit messages. Soares et al.2? compared three
approaches, namely, manual analysis, commit message (Ratzinger et al’s approach2), and dynamic analysis (SafeRefactor approach®4) to analyze
refactorings in open source repositories, in terms of behavioral preservation. Their findings show that manual analysis achieves the best results in
this comparative study and is considered as the most reliable approach in detecting behavior-preserving transformations. In an industrial survey
involving 328 developers at Microsoft, Kim et al.?4 surveyed professional software engineers to investigate when and how they do refactoring.
They first identified refactoring branches and then asked developers about the keywords that are usually used to mark refactoring events in
change commit messages. When surveyed, the developers mentioned several keywords to mark refactoring activities. Kim et al. matched the top
ten refactoring-related keywords identified from the survey (‘refactor’, ‘clean-up’, ‘rewrite’, ‘restructure’, ‘redesign’, ‘move’, ‘extract’, ‘improve’, ‘split’,
‘reorganize’, ‘rename’) against the commit messages to detect refactoring commits. Using this approach, they found 94.29% of commits do not
have any of the keywords, and only 5.76% of commits included refactoring-related keywords. Zhang et al.=% performed a preliminary investigation
of Self-Admitted Refactoring (SAR) in three open source systems. They first extracted 22 keywords from a list of refactoring operations defined in
the Fowler's book™? as a basis for SAR identification.

AlOmar et al.2183 performed an exploratory study on how developers document their refactoring activities in commit messages; this activity is
called Self-Affirmed Refactoring (SAR). They found that developers tend to use a variety of textual patterns to document their refactoring activities,
such as refactor, move and extract. Since the manual extraction of refactoring patterns is a human intensive task and it is subject to personal bias, a
refactoring model is built to automate the identification of refactorings based on refactoring patterns and their quality improvement categories3¢.
In a subsequent study®Z, the authors identified which quality models are more in-line with the developer’s vision of quality optimization when
they explicitly mention in the commit messages that they refactor to improve these quality attributes. In their study of the motivation behind
the application of refactoring, AlOmar et al.23 text-mined refactoring-related documentation and automatically classify a large set of commits
containing refactoring activities. The authors proved the existence of motivations that go beyond the basic need for improving the system’s design
as the main drivers for refactoring activities include the following categories: Functional, Bug Fix, Internal Quality Attribute, Code Smell Resolution,
and External Quality Attribute.

Since we noticed in our previous work?? that various developers are responsible for performing refactorings, in this follow-up work, we explore
what triggers expert developers to refactor the code and what is their refactoring documentation practices. Unlike our study, prior works merely
identified the relationship between expertise and refactoring in general without taking developer perception and documentation into consideration.
Since the investigation of the relationship between refactoring activities and developer experiences is important to understand the practice of
refactoring, in this paper, we push research on refactoring documentation a step forward by exploring which developers are responsible for the
introduction of refactoring patterns in order to examine whether or not experience plays a role in the introduction of these patterns, performed

automatically over a much larger sample of commit messages.

3 | STUDY DESIGN

Our research methodology consists of three main phases - Data Collection, Refactoring Detection & Extraction, and Data Analysis. Figure[T]provides
an overview of our methodology. Described below are details of the methodology activities.

3.1 | Data Collection

To conduct our exploratory study, we used a dataset of well-engineered open-source Java projects. The authors of this dataset=8 curated a set
of open-source projects, proven to follow software engineering practices such as documentation, testing, issue and bug tracking, and project
management. We chose this dataset as it was also analyzed in previous studies®?3240 that have been mining refactoring operations, just like our
study. In total, our dataset is composed of 800 projects hosted on GitHub. Each project was cloned in order to extract the data needed for our
experiments. This data included, but not limited to, each commit author, source files impacted by each committed change, and timestamps etc.
Figureshows violin plots with the distribution of commits, number of contributors, and size (number of .java files) of the selected repositories.
We provide plots for all data of 800 systems (labeled as all), and for a subset of data of 800 systems that effectively analyzed in the study (labeled
as studied), which correspond to the repositories with at least one refactoring detected in the commits during the study period. Tableshows the
statistics of our dataset. The projects in our dataset have 74.6% of the projects (i.e., 597 projects) had their most recent commit within the last
three years. Given that 597 out of the 800 monitored repositories were active during that period, we found refactoring activity in active projects

AlOmar et al

Phase 1 & 2: Data Collection &
Refactoring Detection

JAVA i

T -

Detect refactoring operations

> O -

Commit log,
Detected
refactorings

Engineered open-source Clone repositories
Java projects (711,495)
(800)
Phase 3: Commits Classification
§ ﬂ)ata Preparation , \ 3
' Text Preprocessing

Tokenization

Lemmatization

@ Training Set

' a 3
i T :
i 5 :
i n '
D b :
| N g)]
N F Select sn_thset of __y Data annotation —> Stop-Word —>" 5 % Mté(\i/:lll;;u'l"gr;g & :
H Detected commits Removal m :
refactorings H #| Tost Set
?AE Capitalization 2
] Normalization S]
\ @ Noise Removal — /

Training :

ﬁraining

6eployment

Moved OlsDataHelper o ap to make it reusable: BugFix
Internal QA i
Save Predict
(/ External QA . RN DN Uniabeled
@ Trained Model commit —)l Predict I—A)l Code Smell |
23
Inte | QA
dotoctod by Rner efactoring motivation
k External QA J
Phase 4: Data Analysis |
i [e]
| c] ‘ah
B = *
B mp k= = =

Data analysis

Analyze commits &
(manual & automated)

Extract commit messages
refactorings

Calculate DCR score

FIGURE 1 Overview of our methodology

is statistically significant than the ones in inactive projects with at least one refactoring commit detected during that period. An detailed overview

of the studied project’s is provided in Table[4]

3.2 | Refactoring Detection

Next, we utilized Refactoring Miner#! to identify refactoring operations occurring in the projects. Refactoring Miner iterates over the commit
history of a repository in chronological and compares the changes made to Java source code files in order to detect refactorings. Of the available
state-of-the-art set of refactoring detection tools, Refactoring Miner has the highest performance, more specifically, a precision of 98% and a
recall of 87%2%41 To validate the detection of refactorings, we have also conducted a manual validation of the refactoring types identified by

the Refactoring Miner tool. Such validation covered a random set of 30 refactoring commits, achieving a good performance. Running Refactoring

6 AlOmar et al

Number of commits
Number of Java fes

Number of

= "w

(a) Commits (b) Contributors (c) Source Files

FIGURE 2 Distribution of (a) commits, (b) contributors, and (c) Java source files of repositories

TABLE 3 Statistical summary of our dataset

All | Studied

Statistics Min Q1 Median Mean Q3 Max ‘ Min Q1 Median Mean Q3 Max
Commits 11 290 582 935 1151.50 2439 1 37 78 139.85 173 370
Contributors 1 9 17 27.02 32 66 1 4 7 9.31 12 24
Java files 5 14050 368.50 698.89 855 1913 3 96.50 270 528.26 628.50 1407

Currently Active (597 studied projects) ‘ Currently Inactive (203 studied projects)

Min Q1 Median Mean Q3 Max ‘ Min Q1 Median Mean Q3 Max

Age (in days) 307 334 460 610.22 847 1459 ‘ 1475 1743 1957 2045 2325 3193

Miner on the projects under study, resulted scanning a total of 748,001 commits, from which, 111,884 commits contained at least one refactoring
operation, and we collected a total of 711,495 refactoring operations. On average, each project contains 732 refactoring commits authored by 19

developers.

3.3 | Commit Classification Model Construction

After detecting all of the refactoring operations and the corresponding commits, the next step is to classify these commit messages into one of
the refactoring motivations reported in3. Tableshows five motivations that drive developers to refactor their code. The refactoring categories
have been defined by reviewing the literature on refactoring motivation422312014313714414514613314/| Tg cover all of the existing motivations, the authors
clustered the existing refactoring taxonomy reported in the literature into five categories. We then followed a multi-staged approach to build our
model for commit messages classification. The first stage consists of the model construction. In the second stage, we utilized the built model to
classify the entire dataset of commit messages. An overview of our methodology is depicted in Figure[T] In the following subsections, we detail
the different steps in each stage.

Model Construction. Our goal is to build a model from a corpus real world documented refactorings (i.e., commit message) to be utilized in the

second stage to classify commit messages. The following subsections detail the different steps in the model construction phase.

AlOmar et al 7

TABLE 4 Projects overview
Item Count
Total of projects 800
Total commits 748,001
Refactoring commits 111,884
Refactoring operations 711,495
Considered Projects - Refactored Code Elements
Code Element # of Refactorings
Method 222,785
Attribute 201,791
Class 121,625
Variable 115,717
Parameter 48,054
Package 2380
Interface 1742

TABLE 5 Classification categories

Category Description
Functional Feature implementation, modification or removal
Bug Fix Tagging, debugging, and application of bug fixes

Restructuring and repackaging the system’s code elements
Internal QA . e . . .

to improve its internal design such as coupling and cohesion

Removal of design defects that might violate the fundamentals
Code Smell Resolution of software design principles and decrease code quality such

as duplicated code and long method

Property or feature that indicates the effectiveness of a system

External QA o N N
such as testability, understandability, and readability

3.3.1 | Data Annotation

The model construction requires a gold set of labeled data to train and test the model. To prepare this set, a manual annotation of commit messages
needs to be performed. To this end, we annotated 1,702 commit messages. This quantity roughly equates to a sample size with a confidence level
of 95% and a confidence interval of 2. The authors of this paper performed the annotation of the commit messages. Each author is provided with a
random set of commit messages along with a detail definition of the annotation labels. Each annotator had to label each provided commit message
with a label of either ‘Functional’, ‘Bug Fix’, ‘Internal Quality Attribute’, ‘Code Smell Resolution’, and ‘External Quality Attribute’ To mitigate bias
in the annotation process, the annotated commit messages were peer-reviewed by the same group. All decisions made during the review had to
be unanimous; discordant commit messages were discarded and replaced. In total, we annotated 348 commit messages as ‘Functional’, ‘Bug Fix’,
‘Internal Quality Attribute’, and ‘Code Smell Resolution’, while 310 messages were labeled as ‘External Quality Attribute’.

To avoid having false positive commits, we applied the filtering to narrow down the commit messages eliminating the ones that are less likely to
be classified as one of the five motivation. We designed the filtering to help ensure that we only trained the algorithm on higher-quality commit
messages“8,

We followed the process from existing papers in filtering commit messages“222=21, For example, Fu et al.22 filtered out short commit messages.
Mauczka et al.%? used the “Blacklist” category to filter all commits, whose underlying modifications were not carried out by humans or which do not
actually include any source code modifications. In our work, we apply three filtering heuristics to narrow down the commit messages eliminating
the ones that are less likely to be classified as one of the five categories. It is important to note that we removed short commit messages from

the training, but not from the testing set because (1) short commit messages do not contain enough information and do not clearly describe the

8 | AlOmar et al

purpose of code change , and (2) we want to train the classifier on well-documented commit messages, and label commits that contain enough
information about refactorings. Prior study has pruned short commit messages since these will be noise for the classifiers, and they did not record
the cause of the changes=2. Some criteria we used for filtering were as follows:

o Commits that were either too short or ambiguous were discarded. Some examples of hard-to-classify commit messages are: “Solr Indexer

ready'El “allow multiple collections'El and “Auto configuration of AgiScripts’E]
o If one commit could belong to more than one class, it was excluded.

o If the quality attribute is a part of the identifier name, the commits were excluded, e.g., “SONARJS-541 Precise issue location for Expres-
sionComplexity (51067)". We discarded this commit because “complexity” is referring to a part of a class name and not a quality
attribute.

The above-mentioned examples of ambiguous commit messages prevent us from being confident, and hence, for each discarded commit

message, we randomly sampled another replacement.

3.3.2 | Text Pre-Processing

We applied a similar methodology explained in2223 for text pre-processing. In order for the commit messages to be classified into correct categories,
they need to be preprocessed and cleaned; put into a format that the classification algorithms will accept. The activities involved in our pre-
processing stage included: (1) expansion of word contractions (e.g., ‘I'm’ — ‘l am’), (2) removal of URLs, single-character words, numbers, punctuation
and non-alphabet characters, stop words, and (3) reducing each word to its lemma. The lemmatization process either replaces the suffix of a word
with a different one or removes the suffix of a word to get the basic word form (lemma)=2. In our work, the lemmatization process involves sentence
separation, part-of-speech identification, and generating dictionary form. We split the commit messages into sentences, since input text could
constitute a long chunk of text. The part-of-speech identification helps in filtering words used as features that aid in key-phrase extraction. Lastly,
since the word could have multiple dictionary forms, only the most probable form is generated. We opted to use lemmatization over stemming, as
the lemma of a word is a valid English word24, As for stopwords, we used the default set of stopwords supplied by NLTK=2 and also added our own
set of custom stop words. To derive the set of custom stop words, we generated and manually analyzed the set of frequently occurring words in
our corpus. Custom stop words include ‘git) ‘code’, ‘refactor’, ‘svn’, etc. Additionally, for more effective pre-processing, we tokenized each commit

message by splitting the text into its constituent set of words.

3.3.3 | Training and Test Data Preparation

To gauge the accuracy of a machine learning model, the implemented model must be evaluated on a never-seen-before set of observations with
known labels. Thus, the set of annotated commit messages were divided into two sub-datasets - a training set and a test set. The training set was
utilized to construct the model while the test set was utilized to evaluate the classification ability of the model. For our experiment, we performed
a shuffled stratified split of the annotated dataset. Our test dataset contained 25% of the annotated commit messages, while the training dataset
contained the remaining 75% of annotated commit messages. This split results in the training dataset containing a total of 1,276 commit messages,
which breaks down to 246 ‘Functional’, 271 ‘BugFix’, 255 ‘Internal’, 276 ‘CodeSmell’, and 228 ‘External’ labeled commit messages. The stratification
was performed based on the class of the commit messages. The use of a random stratified split ensures a better representation of the different

types (i.e., labels) of commit messages and helps reduce the variability within the strata°.

3.3.4 | Feature Extraction

After cleaning and preprocessing the commit message, we need to provide the classifier with a set of features that are associated with the commit
messages in our dataset. However, not all features associated with each commit message will be useful in improving the prediction abilities of the
model. Hence, a feature engineering task is required to determine the set of optimum featuresZ. In our study, we constructed our model using the
text in the commit message. Hence, the feature for this model is limited to the commit message. We utilized Term Frequency-Inverse Document
Frequency (TF-IDF)28, commonly used in the literature2?2313330| t5 convert the textual data into a vector space model that can be passed into the
classifier. In our experiments, we evaluate the accuracy of the model by constructing the TF-IDF vectors using different types of N-Grams and

feature sizes. The N-Gram technique is a set of n-word that occurs in a text set and could be used as a feature to represent that text2. In our

2https:/github.com/01org/graphbuilder
Shttps:/github.com/Qinstall/java-model
“https:/github.com/1and1/attach-gar-maven-plugin

AlOmar et al | 9

classification, we use N-Grams since it is very common to enhance the performance of text classification’®l. Using TF-IDF, we can determine words
that are common and rare across the documents (i.e., commit messages) in our dataset; the model utilizes these words. In other words, The value
for each N-Gram is proportional to its TF score multiplied by its IDF score. Thus, each preprocessed word in the commit message is assigned a

value which is the weight of the word computed using this weighting scheme.

3.3.5 | Model Training

For our study, we evaluated the accuracy of six machine learning classifiers: Random Forest, Logistic Regression, Multinomial Naive Bayes, K-
Nearest Neighbors, Support Vector Classification (C-Support Vector Classification based on LIBSVM©2¢3) and Decision Tree (CART®4). We selected
these classifiers since they are widely adopted in several classification problems in software engineering (e.g.,02/2266167156)

It is important to note that the library containing the classification algorithms is capable of multiclass classification. As per the Python's SKlearn
documentation, Random Forest, K-Nearest Neighbors, Logistic Regression, and Multinomial Naive Bayes are inherently multiclass8, while SVC
utilizes a one-vs-one approach to handle multiclass®?. Moreover, to ensure consistency, we ran each classifier with the same set of test and training

data each time we updated the input features.

3.3.6 | Model Tuning & Evaluation

The goal of this step is to obtain the optimal set of classifier parameters that provide the highest performance by tuning the hyperparameters. For
numeric-based hyperparameters, we determined the bounds/range for testing through continuously running the classifier with a different range
of values to identify the appropriate minimum and maximum value. We performed our hyperparameter tuning on the training dataset using a
combination of 10-fold cross-validation and an exhaustive grid search?%. Our test dataset did not take part in the training process, which provides
a more realistic model evaluation. The combination of hyperparameters that resulted in the highest Micro-F1 score was selected to construct the

model. Table[8]provides the optimal hyperparameter values for the classification algorithms in our study.

TABLE 6 Optimal parameter values for the classification algorithms

Algorithm Parameter Value

max_depth 78

n_estimators 500
Random Forest

criterion gini
bootstrap false
c 1.99
Support Vector Classification gamma scale
kernel linear
criterion gini

Decision Tree
max_depth 75

penalty 11
Logistic Regression solver liblinear

c 1.0
Multinomial Naive Bayes alpha 2.63

. n_neighbors 69
K-Nearest Neighbors . .
weights uniform

3.3.7 | Optimized Model

In this stage, the optimized model produced by the training phase is utilized to predict the labels of the test dataset. Based on the predictions, we

measure the precision and recall for each label as well as the overall F1-score of the model. In Section |4} we detail our classification results.

10 AlOmar et al

TABLE 7 Statistical summary of DCR scores based on the type of commit performed in the project

Min Q1 Median Mean Q3 Max

Non-Refactoring Commits
0.0001 0.0010 0.0019 0.0031 0.0043 0.0130

All Commits
0.0002 0.0065 0.0197 0.0456 0.0604 0.2632

Model Classification. We utilized the optimized model that we created in the prior stage. In order to be consistent, before classifying each commit
message, we performed the same text pre-processing activities, as in the prior stage, on the commit message. The result of this stage is the
classification of each refactoring commit into one of the five categories. The output of this classification process was utilized in our experiments
in order to answer our corresponding research questions.

3.4 | Data Analysis

Finally, we analyzed the output generated from our detection and extraction activities to answer our research questions. Since our research
questions are both quantitative and qualitative, we used tools/scripts along with manual activities to arrive at our findings. For replication purposes,
our dataset and other artifacts are available on our project website'ZL,

4 | RESULTS & DISCUSSION

In this section, we report and discuss our findings for analyzing the identified refactoring-related patterns to answer our research questions. For
each research question, we defined the following hypothesis:
o Hypothesis #1. Whether developers with more contribution are most likely to have different motivations to refactor code.
—RQ1. What is the distribution of experience among developers that perform refactorings?

—RQ2. Do developers with more contribution refactor code more often?

o Hypothesis #2. Whether developers with more contribution are most likely to be responsible for a higher number of refactoring activities.

—RQ3. What triggers developers to refactor the code?

o Hypothesis #3. Whether developers’ experience correlates with better documentation of refactorings.

—RQ4. Does developer's experience influence the quality of refactoring documentation?

4.1 | RQ1. What is the distribution of experience among developers that perform refactorings?

For our experiments on developer experience, we studied the project contributions made by the developer. In other words, we utilized the volume
of commits made to source code files by a developer as a proxy for contribution. Introduced byZ2, this approach calculates the Developer’s Commit
Ratio (DCR) for each developer in the project. This ratio measures the number of individual commits made by the developer against all project
commits. It is worth noting that the DCR scores are normalized and it is comparable across projects as the values are not affected by the size of

the projects. Formally, this ratio is defined as:

DCR — Individual Cor.)tnbutor Ct.)mmlts
Total Project Commits
In our experiment, we consider the author of a commit as its developer. We followed the same approach in Peruma et al.*2 who studied the

(1)

DCR distribution of developers that perform rename refactorings. As shown in Figure we analyzed two types of distributions (1) developers
who only performed non-refactoring operations (depicted as ‘Non-Refactoring Commits’ in the chart), and (2) developers who performed a mix of
refactoring and non-refactoring operations on the source code (depicted as ‘All Commits’ in the chart). Not surprisingly, our dataset had a large

proportion of developers that performed a mix of refactoring and non-refactoring operations. These developers also had a higher DCR score.

AlOmar et al 11

1.00 A

0.75+

0.50+

Density

0.25+

0.00-

le-04 le-03 le-02 le-01 1e+00
Developer Commit Ratio (Log Scale)

I:IAII CommitsDNon—Refactoring Commits

FIGURE 3 Distribution of DCR values for developers based on the type of commit performed in their project

We also observe from Figure[3]that developers who are tend to interleave refactorings in their commits, have a higher DCR score than developers
whose commits do not contain refactorings. Even though we see an overlap in the density plot, the majority of non-refactoring developers are
more concentrated on the lower end of the DCR scale. Furthermore, looking at the statistical summary of DCR scores in Table[7] we see that the
average DCR score of a developer performing only non-refactoring commits is 0.0031 while the average DCR score of a developer performing all
types of commit operations is 0.0456. Similar to*? we performed a non-parametric Mann-Whitney-Wilcoxon test on the DCR values for developers
that do not perform any refactoring operations and those that did. We obtained a statistically significant p-value (< 0.05) when the DCR values
of these two groups of developers were compared. Hence, this shows that developers working exclusively on new features to a system are more
likely to have less contribution in the project than developers whose work also includes performing refactoring activities. Our findings also confirm
the studies carried out by2324 that developer experience is an essential factor when it comes to software refactoring. However, unlike%324 the
approach we took relied on a metric (DCR) and was performed automatically over a much larger sample.

Summary. Using an alternate approach (i.e., developer contributions), we confirm findings from prior research that developers with more
contributions are typically involved in refactoring activities in systems. As our approach utilizes existing repository data, and is automated,
it provides a non-subjective and scalable approach to estimate the most contributed developers in a project and thereby help to identify
developers that are suitable for specific project tasks.

4.2 | RQ2. Do developers with more contribution refactor code more often?

In this research question, we investigate whether specific developers are significantly contributing to the overall refactoring of the system, or if
it is randomly distributed among all developers. We approach this research question from two fronts - quantitative and qualitative. In the quanti-
tative approach, we perform an empirical and automated study on our dataset. In the qualitative approach, we perform a manual, case study like
investigation on a select set of projects.

Quantitative Analysis. This part of the research question investigates the DCR values associated with each developer in the project, along with the
total number of refactoring and non-refactoring commits made by the developer for only Java source files. To perform the comparison, we split
the developers into two sets. The first set consisted of developers that fell into the top 5% (labeled as TOP-5) of DCR scores while the second set
contained the remaining (i.e., 95%) developers. The TOP-5 of developers equated to approximately a 95% confidence level and confidence interval
of 5. Represented by the TOP-5 are 372 developers, while the remaining developers amount to 7,066. For developers in each of the two sets, we

obtained the count of refactoring and non-refactoring commits made by the developer. FigureE]shows aviolin plot of this dataset. Figurea) shows

12 AlOmar et al

900~

850~ 24-
800- 22-
750~
700~ 2
650~ 18-
600- G
€ 550- -
3 500~ § 14-
(8] O
-’E 450- E 12-
g 400- £
O 350- [3 10-
300- 8-
250-
200~ N
150- — 4-
100-
50- &
Ok (O
Non-Refactoring Commits . Refactoring Commits Non-Refactoring Commits Refactoring Commits
Commit Type Commit Type
(a) Top 5% of Developers (b) The Rest of Developers

FIGURE 4 Comparative counts of refactoring and non-refactoring commits for developers. Chart (a) is for the top 5% of developers, while chart (b)
is for the remaining developers.

TABLE 8 Statistical summary of the volume of refactoring operations performed by the top 5% and the remaining set of developers

Min Q1 Median Mean Q3 Max

Top 5%

1.00 2.00 6.00 11.14 15.00 55.00
Rest

1.00 1.00 2.00 3.57 5.00 16.00

the refactoring and non-refactoring commits of the TOP-5 of developers, while Figureb) shows the same counts for the remaining developers. A
violin plot provides an ideal mechanism to represent our findings as they are useful in providing a visual comparison of multiple distributions. For
better interpretation and visualization, we removed outliers from the data via the Tukey’s fences approach'Z3,

Looking at FigureEl the first observation is the volume of commit counts made by the two sets of developers. A majority of the TOP-5 devel-
opers contribute significantly more to the project in terms of refactoring and non-refactoring commits. On average, a TOP-5 developer makes
70.24 and 223.7 refactoring and non-refactoring commits, respectively. On the other hand, the rest of the developers average around 3.21 and
15.69 refactoring and non-refactoring commits, respectively. Furthermore, the TOP-5 violin plot shows a high frequency of developers performing,
approximately, 15 to 75 refactoring commits. The same does not hold for non-refactoring commits, where we see a higher density within the range
of 75 to 125 commits. Additionally, we observed that our dataset contains some developers that perform at most around 300 refactoring commits
while non-refactoring commits go up to around 800. Hence, non-refactoring commit counts have a higher variation than refactoring commits. The
refactoring box plot is more condensed than the non-refactoring boxplot; this indicates that the data varies less and hence is more consistent.

Finally, we looked at the number of refactoring operations performed by the two groups of developers. It should be noted that a single refactoring
commit can contain one or more refactoring operations. A statistical summary of our findings is presented in Table[8] while a comparative histogram
is available in Figure|§| Even though the histogram shows a higher volume of refactoring operations by less contributed developers, it should be
noted that this is the cumulative count across all projects in the dataset. If we were to look at the individual developer contributions, we could see
that more contributed developers apply refactorings more often than less contributed developers.

Qualitative Analysis. To better understand the key role of the TOP-5 contributors in the development team, we extract refactorings from a select
set of projects - Hadoo;ﬂ OrientDHﬂ and Cameﬂ These three systems were randomly selected based on the criteria used in'? (i.e., had more

than 100 stars, had more than 60 forks, had size over 2 MB, these repositories are active and well-used). Next, we cluster production and test files

Shttps://github.com/apache/hadoop!
Shttps:/github.com/orientechnologies/orientdb
7https://github.com/apache/camel

https://github.com/apache/hadoop
https://github.com/orientechnologies/orientdb
https://github.com/apache/camel

AlOmar et al 13

Top 5% of Developers Rest of Developers
(=3
o _ o
o (=]
@ S
— S 7 —
Q
o
o _|
il
N
o
[=]
S 4
n
B
o
o _|
o
Q
3 o Iy
g 8 c 8
@ 3 8 -
g - g 8
2 2 -
w w
o
o
o
=
(=]
o _|
(=]
n
o
S
wn
o o J
T T T T T 1 T 1
0 10 20 30 40 50 5 10 15
Refactoring Operations Refactoring Operations

FIGURE 5 Histogram of refactoring operations performed by the top 5% and the remaining set of developers

of these projects, by developer ID. Finally, we carefully examine the top contributor’s professional profiles to identify their role in the organization
hosting the software project. Our findings are detailed below.

Figure|§| portrays the distribution of the refactoring activities on production code and test code performed by project contributors for each
software system we examined. The Hadoop project has a total of 114 developers. Among them are 73 (64%) refactoring contributors. As we
observe in Figures@a and |§b , not all of the developers are major refactoring contributors. The main refactoring contributor has a refactoring
ratio of 25% on production code and 10% on test code. Figure[6f and[8d present the percentage of the refactorings for the OrientDB production
code and test code. Out of the total 113 developers, 35 (31%) were involved refactoring. The top contributor has a refactoring ratio of 57% and
44% on production and test code respectively. For Camel, in FiguresEh and@‘ , 73 (20%) developers were on the refactoring list out of 368 total
committers. The most active refactoring contributor has high ratios of 51% and 48% respectively in production and test code. We also note that
very few developers applied refactorings exclusively on either production code or test code for the three projects under study.

The manual analysis aligns with the findings of the previous section in distinguishing a subset of developers that monopolize the refactoring
activity across the three projects. To identify their key role in the development of the project, we searched, using their GitHub IDs, their professional
profiles on Linked-lrﬂ We were successful in locating the role of the top contributors for the 3 projects, and we found, through their public affiliation
to the project, that they were either development leads or senior developers.

Our findings show that refactoring activities, in the 3 projects, are mainly performed by a subset of developers who have a management role
in the company. Senior developers care more about refactoring the source code to ensure high-quality software and make the software easier
for future development. These subsets of developers may perform certain practices when applying code refactoring (e.g., refactoring before and
after adding new features, testing frequently to avoid any bugs that may introduce and affect the functionality of the software, and documenting
and automating the application of refactoring). One of the reasons that seems not to encourage the other subsets of developers to significantly
refactor the code is the technical constraints such as inadequate tool supports or lack of trust of automated support for composite refactorings. A
discussion about various barriers to refactoring has been highlighted in Murphy-Hill et al.Z4,

8Used in previous studies as a source to identify developers skills and experience.

AlOmar et al

14

FIGURE 6 Refactoring contributors in production and test files in Hadoop, OrientDB and Camel

3po3 353y [pweD () 3po3 3531 GAIUBLO (P) 2po3 353 doopeH (q)

%7 0T Jadojpasq
%6 v JodojpraQg
/ %€ 1T Jadojprag

/ %€ 0T Jadojrag /

%TT € 1adojanaqg

%L € Jadojanag

% LT 1odoprsq
%Z 9T Lmuo_w>mn_/ %9T \
% 8T Jadojprsg
%C 6 Jadojaraq ¢ 4 sadopono / Z Jadojaasg 2
%€ 6 42dojaAsQg
" %8T ¢ 1odoprsq ~—
% 9 Jadojprag
,.) %t L Jadojarsg %L ¥ JadojpAsg
— —
%€ g Jadojanag \
]
—
%S G J1adojpAaQq
%Y G Jadojanag
\ \
%¢ 0T JodoPAsq %t 9 1adojorsq %€ 8 42dojanaq
%g /£ 1adojarsq — —
d %Y 9 4adojareq
%1 £T Jadojanay %€ £ 42dojPAeq \ % \
X%ﬂmwﬂo‘_% w“,gwn_ %€ 8 Jadojanag %z ST Jadojonsq
\ / \ %2 T 4odojans Q\
%2 ST 12dojanay
%8 G Jadojprag \ / %z ¢ 4adopaag
%GT g Jadojanag %S v 12doPrag %T 6 Jadojanag %01 € Jadojanag
3pod uoypdnpoud [pwe) (3) 3pod uonoanpoid gaiuauo (9) 8pod uoydnpoud doopeH (e)
%L t 4adojpreq o%T 21 sadojprsg
%z €T Jodojans
%1 €1 Jadoprag %TS T Jadojanag % TT Lwno_m>moo// v
odorons T _— %1 9T Jadoprag &
%5 9 sacol o/ %g 0T Jadopreg
%1 0T Jadojprsq ~— %01
%1 ¢T Jadojanaq — [—— ¢ Jadojanag
T % G Jadojaraq —_ %g 1T Jadoprag
] P
— —

%€ 8 Jadojpnag %1 8T 42dojprsq

— %T ST Jadojarsg
%Z1 g Jadojprsq

%€ £ Jadojansg

%2 T dadojarsq

\

%81 T 12dojanag

— —

%G 9 49dojanay
%g /£ 4adojprsq /,va S %S 9 |onaQ
% 6 J2dojans D\\ 6T mn‘_mno_m>wo
% L 49dojonady
%111 M%mmwwgwm \ / \ \ / % £ 43dopPAsa 546 ¢ 1odojanaq \
0T 43dojsAsq

%9 G 4adojprsg %6 € Jadojprag %C 9 EMﬂWQM@E?wD %6 € 4adojanaq %G 1 Jadojprsg

AlOmar et al 15

TABLE 9 Detailed classification metrics (Precision, Recall, and F-measure) of each classifier

Random Forest Support Vector Classification Decision Tree ‘
Category Precision Recall F1 Category Precision Recall F1 Category Precision Recall F1
Bug Fix 0.83 0.79 0.81 | Bug Fix 0.75 0.78 0.77 | Bug Fix 0.77 0.80 0.78
Code Smell 0.93 0.95 0.94 | Code Smell 0.93 0.94 0.93 | Code Smell 0.89 0.91 0.90
External QA 0.85 0.91 0.88 | External QA 0.92 0.89 0.90 | External QA 0.77 090 0.83
Functional 0.81 0.91 0.86 | Functional 0.77 0.88 0.82 | Functional 0.92 0.83 0.87
Internal QA 0.95 0.81 0.87 | Internal QA 0.95 0.84 0.89 | Internal QA 0.91 0.80 0.85
Average F1 0.87 0.87 0.87 | Average F1 0.87 086 0.86 | Average F1 0.85 085 0.85
Logistic Regression Multinomial Naive Bayes K-Nearest Neighbors

Category Precision Recall F1 Category Precision Recall F1 Category Precision Recall F1

Bug Fix 0.66 0.70 0.68 | Bug Fix 0.63 0.77 0.69 | Bug Fix 0.62 0.71 0.66
Code Smell 0.89 0.94 0.91 | Code Smell 0.82 0.94 0.87 | Code Smell 0.76 0.93 084
External QA 0.88 0.88 0.88 | External QA 0.97 0.71 0.82 | External QA 0.85 0.75 0.79
Functional 0.77 0.87 0.82 | Functional 0.66 0.83 0.74 | Functional 0.68 0.73 0.71
Internal QA 0.96 0.78 0.86 | Internal QA 0.99 0.67 0.80 | Internal QA 0.97 0.71 0.82
Average F1 0.83 0.83 0.83 | Average F1 0.81 0.78 0.78 | Average F1 0.78 0.77 0.76

Summary. While refactorings are applied by various developers, only a reduced set of developers are responsible for performing the
majority of these activities, in both production and test files. This set of developers take over refactoring activities without necessarily
being dominant in other programming activities. As we examine the top contributor’s publicly accessible professional profiles, we identify
their positions to be advanced in the development team; hence, demonstrating their extensive knowledge of the design of the systems
they contribute to.

4.3 | RQ3. What triggers developers to refactor the code?

To answer this research question, we present the refactoring commit messages classification results explained in Subsection[3.3] This section details
the classification of 111,884 commit messages containing 711,495 refactoring operations. The complete set of scores for all the classifiers including
the Precision, Recall, and F-measure scores per class for each machine learning classifier is provided in Table[9] The best performing model was
used to classify the test dataset. Based on our findings, we observed that Random Forest achieved the best F1 score: 87% which is higher than its
competitors. Random Forest belongs to the family of ensemble learning machines, and has typically yielded superior predictive performance mainly
due to the fact that it aggregates several learners. Hence, we utilized this machine learning algorithm (and its optimal set of hyperparameters) as
the optimum model for our study.

To better understand the nature of classified commits, we randomly sampled examples from each category to illustrate the type of information
contained in these messages, and how it infers the use of refactorings in specific contexts. Table[5]shows the five main motivations driving refac-
toring, which we can also divide into more fine-grained subcategories. For instance, we subcategorize Functional-classified commits into addition,
update and deletion. Similarly, BugFix is decomposed into Localization, debugging and correction. The corresponding subcategories for Code Smell
Resolution include long method, duplicate code removal and large class. As for the internal, the subcategories could include Object-Oriented design
improvement such as coupling and cohesion. The subcategories of External Quality Attribute are more straightforward to extract from the commit
messages since developers tend to explicitly mention which quality attribute they are trying to optimize. For this study, the sub-categories we
found in our mined commits include testability, usability, performance, reusability and readability. Then, for each subcategory, we provide an illustra-
tive commit message as an example as shown in Fgures[9][10}[11}[12] and[I3] One important observation that can be drawn from these messages
is that developers may have multiple reasons to refactor the code; some of which go beyond Martin Fowler’s traditional definition of associating
refactoring with improving design by removing code smells. These subcategories are not exhaustive, there are many others. These are just examples
to illustrate what commits look like.

16

AlOmar et al

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30%

20%

10%

0%

B ugFix & Functional 1 Internal QA External QA B Code Smell

FIGURE 7 Distribution of refactoring types per category performed by top 5% developers

For functional-focused refactoring, developers do refactor the code to introduce, modify, or delete features. For instance, the commit
description in one of the analyzed commits (see FigureED was: adds several new features: UseTemperatureForSnowHieght, etc. It is clear that
the intention of the refactoring was to enhance existing functionalities related to the snow measurement, which include using temperature
for snow height, changing the freeze setting, etc. As can be seen, developers incorporate refactoring activities in development-related task

(i.e., feature addition).

In the second category, developers perform refactoring to facilitate bug fix-related activities: resolution, debugging, and localization. As
described in the following commit comment (See Figure: Fixed a bug related to detecting timeouts of CountDownLatches, etc, the developer
who performed refactoring explained that the purpose for the refactoring was to resolve certain bug that required to check a return value
to determine whether there was a timeout or the count went all the way down. Thus, it is clear that developers frequently floss refactor

since they intersperse refactoring with other programming activity (i.e., bug fixing).

For code smell-focused refactoring, it is clear that developers remove certain code smells such as feature envy, duplicated code, and long
methods. As can be seen from from Figureﬂ;ﬂ developers performed Extract Method refactoring to remove a code smell which corresponds
to a long method bad smell. This traditional design improvement refactoring motivation is best illustrated in the following change message:

Broke up long methods into a bunch of smaller methods.

To improve the internal design, it is apparent that developers introduce good practices (e.g., use inheritance, polymorphism, and enhance the
main modularization quality drivers). Further, developers primarily refactor the code to improve the dominant modularization driving forces
(i.e., cohesion and coupling) to maximize intra-class connectivity and minimize inter-class connectivity. This design improvement refactoring
motivation is best illustrated in the following change message, shown in Figure@ A large amount of code were moved out of PMD class to a

RulesetsFactory utility class, here again to reduce coupling and scope of responsibility.

AlOmar et al 17

100 %

90 %

80 %

70 %

60 %

50 %

40 %

30%

20%

10%

0%

B ugFix & Functional 1 Internal QA External QA B Code Smell

FIGURE 8 Distribution of refactoring types per category performed by the rest of developers

o Forthe external quality attribute category, refactorings are performed to enhance nonfunctional attributes. For example, developers refactor
the code to improve its testability, usability, performance, reusability, and readability. Developers are making changes such as extracting a
method for improving testability as they test parts of the code separately. They are also moving a method or class to improve code reusability.
This is illustrated by the following commit message in Figure [I3} Moved OlsDataHelper to api to make it reusable for other tests. Closer
inspection of this commit comment show that developers intended to apply nonfunctional-related development topics while performing
refactorings.

From the refactoring operation usage perspective, we notice that some commit messages describe the method of refactoring identified by
Refactoring Miner. For instance, in order to remove the long method code smell, developers extracted a method to reduce the length of the original
method body. Also, to remove the feature envy code smell, move method refactoring operation was performed in order to place the fields and
methods in their preferred class. In both cases, developers explained these changes in the commit messages. It is worth noting that a singular
refactoring is almost never performed on its own, as was noted for some of the refactoring commit messages reviewed for this paper. For instance,
to eliminate a long method, Fowler suggests using several refactorings (e.g., Replace Temp with Query, Introduce Parameter Object, and Preserve Whole
Object) depending on the complexity of the transformation. Due to the limited refactoring operations supported by Refactoring Miner, we could
not demonstrate such composite refactorings. However, exploring developers practice in performing batch/composite refactoring is an interesting
research direction that can be investigated in the future.

To better analyze the existence of any patterns on the types of refactorings applied in each category, Figures|Z|andpresent the distribution
of refactoring types in every category. We would like to note that these two stacked bar charts normalized the values to 100%, i.e., the charts
show the contribution for each group toward the 100%. Refactoring types were applied by top 5% developers with similar frequency across all
categories. However, the most used refactoring types for Bug Fix, Functional, Internal Quality Attribute, External Quality Attribute, and Code Smell

are respectively: Extract Variable, Move & Rename Attribute, Replace Attribute, Move Source Folder, and Move Class. In contrast, as can be seen from

18

AlOmar et al

Browse files

Winter Wonderland!

© va

ommitted on Nov 13, 2015

FIGURE 9 Commit message indicating the addition to a new featureZ?

Fixed a bug related to detecting timeouts of CountDownLatches.
ith

5://1a

P master © vis2s

IsmAvatar authored and IsmAvatar committed on Jun 14, 2007

FIGURE 11 Commit message indicating the removal of the code smellZZ

Browse fles

main class (no functional cf

565-9433-0410-a72c.- 3788634960

P master © pmd releases/6300

1 parent 846107 comit 7F113¢feTebcoadlse

Romain Pelisse committed on Nov 17, 2011

FIGURE 12 Commit message indicating the improvement of the internal quality attributeZ8

Moved OlsDataHelper to api to make it reusable for other tests. Maybe...

e should craft a “comson-test’ project instead

Dwsr

tted on Feb 16, 201

Ojo

FIGURE 13 Commit message indicating the improvement of the external quality attribute”

Figure the remaining set of developers perform refactorings differently as not all refactoring types were applied in all categories and other types
were not applied in any of the categories such as Move & Rename Attribute and Replace Attribute. What can be clearly seen in this figure is the
variability of certain refactoring types and frequency. For example, Change Package, Extract Interface, Push Down Attribute and Replace Variable with
Attribute are solely applied in External Quality Attribute, Code Smell, Functional, and Internal Quality Attribute, respectively. Similarly, Move Class

was mostly used by the rest of developers when refactoring code to fix code smells.

AlOmar et al | 19

We compare the distribution of refactoring refactorings identified for each category by the top 5% developers and the remaining set of refac-
toring contributors using the Wilcoxon sum-rank test€%, a pairwise statistical test verifying whether two sets have a similar distribution. The Null
hypothesis is defined by no variation in the refactoring distribution performed by top 5% developers and the rest of developers. The alternative
hypothesis indicates that there is a variation in the refactoring distribution per category between both group of developers. If the p-value is smaller
than 0.05, the distribution difference between the two sets is considered statistically significant. The choice of Wilcoxon comes from its non-
parametric nature with no assumption of a normal data distribution. The difference between the contribution of the two groups of developers are
found to be statistically significant as the p-values for the category BugFix, Functional, Internal QA, External QA, and Code Smell are respectively
3.17724e-8, 4.05194e-9, 3.76671e-10, 6.69847e-9, and 8.81574e-8.

Summary. Our classification has shown that improving the design through fixing code smells is not the main driver for top contributed
and less contributed developers to refactoring their code bases. As explicitly mentioned by the developers in their commit messages,
refactorings are interleaved with the activities of bugfix and feature addition or modification. Additionally, the distribution of refactoring

operations per refactoring motivation are performed differently by the top 5% and the remaining set of developers.

4.4 | RQ4. Does developer’s experience influence the quality of refactoring documentation?

Generally, having good historical documentation is invaluable when tracking the root cause of a regression or bug, and having a good refactoring
documentation help to better understand the motivation driving refactoring. Giving enough documentation/background related to the performed
refactorings is important to facilitate the code review process. Recent studies have shown that the process of reviewing refactoring changes
heavily relies on understanding the context of the performed refactoring®Z42. Furthermore, the lack of refactoring documentation was one of the
main challenges that impacted the efficiency of the review process“Z. This observation motivates us to explore documentation practice written by
open-source developers and investigate the correlation between developer contributions and refactoring documentation.

In order to better understand developers contribution and its relation to the practice of refactoring documentation, we propose the following
hypothesis: “top contributed developers tend to document refactoring activities less than less contributed developers”. To test this hypothesis, we extract
all of the commit messages mined by the tool Refactoring Miner, and consider Self-Affirmed Refactoring (SAR) terminology patterns listed inS136133
to observe refactoring documentation practice expressed by the top 5% and the remaining set of developers in their commit messages.

In an empirical context, we test this hypothesis in two rounds. In the first round, we used the term ‘refactor’ since it is used by the related
studies2422802822/ 3nd intuitively the first term to identify refactoring-related activities in commit messages. In the second round, we re-tested the
hypothesis using the SAR patterns (See Table . For both rounds, we quantified the proportion of commit messages including the searched label
for top 5 % and the rest of refactoring contributors.

Figuresandportray the distribution of refactorings in labeled commits with ‘refactor’ and SAR patterns, respectively. Similar to the previous
research question, we used 100% stacked bar charts to easily compare and visualize the difference between both groups. The first observation we
can draw is that top contributed developers tend to document less refactoring than less contributed developers. Since these developers frequently
refactor the code, they have less time to document. Another reason can be that top contributed developers feel less need to document refactoring
activities because the changes are clear and easy to understand. More research is required to explore and better understand this phenomena.
In contrast, developers who occasionally refactor the code, they tend to provide better refactoring documentation through commit messages.
Another observation is that top contributed developers tend to follow the name of the refactoring operations mentioned in the Fowler’s book'=2.
For example, to perform rename-related activities, they use the term ‘Rename’ in the corresponding commit messages.

To determine whether the variation is statistically significant, we use the Wilcoxon sum-rank test®2, a non-parametric test, to compare between
the two group of commits, since these groups are independent on one another. The Null hypothesis is defined by no variation in the refactoring
distribution performed by top 5% developers and the remaining of the contributors. Thus, the alternative hypothesis indicates that there is a
variation in the usage of patterns between both sets. The variation between values of both sets is considered significant if its associated p-value is
less than 0.05. By comparing the different commits that are labeled ‘refactor’ and labeled with SAR patterns by top 5 % developers and the rest of
developers, we observe a significant number of labeled refactoring commits using the term ‘refactor’ for each refactoring operation supported by
the tool Refactoring Miner (p-value = 0.04). The results for commits labeled with SAR patterns is statistically significant (p-value = 0.00009) This
implies that there is a strong trend of less contributed developers in using these phrases in refactoring commits.

AlOmar et al

20

TABLE 10 List of Self-Affirmed Refacoring (SAR) patterns defined in

3po3 dn ,ueap (0gZ,
AJpUBLL-3|qISUDIX® B10W 31 SNE (6Z2)
PapuaIxa Ajises 210 (822)
BU3eULIO JUISISUOD DIOW (£ZZ,
9p02 papasuuN ,A0WSY (927)
2p0 papasuun il (522)
LOUBYU 2INPANYIIY (H72)
anpapydle dueyud (€22
uononpai AydiesdiH (zzz)
Lueap AyasesaiH (1zz)
.8ueyd [eanyonas (0Z2)
Juawanoldwi SuiSexded (612)
Juawanosdwi Suiwen (812)
anssi Ajijenb x4 (£12)

sassep pasnun >oEw~_ (512
Adudjsisuod Suiweu ,Aoidw (H1)
usisap ,8uey (€12

40 U199 (212

smeyy A

aunjonyys a8exoed m:mr_u (012)
Ayjenb apod ,Aoidw] (4

28ueyd ainjonus uoneziuesio m_:_uo_z
28ueyd a1njonus a|Npop
a8uey ainjaniig
uoneziwolsnd [In4

sa8UeY 2139WS0 (E0T

a8exed agueyd (ZoZ,

3po3 5531 (102)

2pod ayy Ajduiis (00z)
sapuapuadap umop paysnd (66T)
Aduspuadap apod padnpay (861)
3po3 N0 pajoeId (£61)

Yam 31 93e(day (96T)

dn .1 (56T)

LA0IM3Y (16T)

L2e(day (€61)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(602)
(802)
(zo2)
(902)
(soz)
(voz)
)
)

apod dnuea|D (¥81)

9840w peq x4 (€8T)

40 IN0 3P0D aIou PAAOA (Z8T)

dn uajeaN (187)

SaUIeU B|qeLeA JUAISISUOD BI0W S (08T)
sawieu ajqenien ayenidoidde ,sn (6/T)
aweu sa|dwis (8£T)

Aouassisuooul uiweu A0Sy (££T)
a8exed ,weuay (9/T)

A2Ua3SISU0D 10) SBSSE|D ,WeudY (S/T)
SUORUSAUOD SUIWeU eAef 03 SuIpI0dde ,Weudy (7£T)
Aduaysisuod 1oy ,weudy (€£T)

dnueajp aweN (z£T)

,weuay Joley (TLT)

Adua3sisuod Sulweu uiejuleln (0£T)
UOIJUSAUOD UIBUIBIN (69T)

auleu poyjau u odA] (89T)

LWeu xi4 (£9T)

uonuAAU0D Sulweu X4 (99T)

Bujweu pasuspuod sa|qeu (S9T)
Adua3s1sU02 10§ saweu Jajaweled poyiaw ,Sueyd (y91)
aweu poypaw Bueyd (€97)

aweu afexoed ayy ,8uey)d (z91)

auwieu ayy 8ueyd (191)

aweu ,8uey) (091)

Sweu Janag (6ST)

dnuesajd Ayijenb asoly (8ST)

Ajijenb ureyurel (£5T)

Ayjenb apod pue 3jA3s panoidw (9ST)
Ajjenb apod jo Juswanoidwi (SST)
Ayenb anoidwi (FST)

2oueUUIRW dININY AYjdwis (EST)
ulejutew o3 Jaised (gST)

@dueUjUIRW BP0 JO BseT (TST)
paerioy Buiaow dueUBIUIEW 35T (0ST)
dn-.piL (6%T)

AHM-3Y (81T)

Sexoeday (£v1)

9pod .uea|d (8ET)

Ay apod (£€T)
J12183]2 9P0d R (9ET)
Ayjjenb apod (SeT)
uopeayiun 3pod (eT)
uoneayipow apo) (€€T)
Buiynysal apod (zeT)
JuaWadURYUS 3pO)) (TET)
Buip1y 9pod (0ET)
3uiAnneaq apod (621)
ANn1n1Isal apod (8ZT)

3JA3s 9p0D)
Juawanoldwi 9po)
Juawgsnipe apo)
uonesyydwis 3pod (#ZT)
uiystjod 9pod (€21)

(

V4

9

(s

(s

(e

[t4

(T

(s

(6

(8
(zz1)
(2
(s
(¥
(e

Sunjewo} 3pod (zz1)

9
(01
(
(
(
(
(
(
(
(
(
(
(
(
(
(

1)
142

Juawadueleal 9po) (9ST)
uoneziueg.io apod (0ZT)
3unjewsosal apo) (61T)
uoneziwnido apo) (8TT)

UOISIARI 3P0 (£TT)

2139Ws03 3po) (911)

231Ma1 3p0)) (STT)

M3IAR1 3pOD (Y1T)

weuoud 03 Ja1sea 3p0d 3y} s (ETT)
3]s 9pod 0} suonedyIPoW Jo 5107 (ZTT)
3]A3S P02 03 SUOIEIYIPOIA (TTT)

3A3s 9p02 03 SsuUBWISNIpe JOUIN (0TT)
343 9p0d Aoudw] (60T)

31A3s 3pod x14 (80T)

uonesyiun ajAls 3po) (L0T)

«Aoidwit 31A3s 9poD (90T)

3lA¥s 3po3 3y dn ,ues|d (SOT)

3lk¥s 9po3 Bueyd (¥0T)

dnApLL (€0T)
M3y (20T)
e810-3Y (10T)

2pod Ayiduiis (z6)

Ayuep 9pod anoidw (T6)
LZIwoIsn) (06)

A2U3s1SU0D UtEIUIElN (68)

doo ssa|pasu 0wy (88)

$20]q 35[9 Alessadauun ,Aoway (£g)
pasnun ,noway (98)
salpuapuadap pasnun ,Aoway (S8)
Aouapuadap ,Aowdy (8)
juepunpal ,noway (£8)

2pod papaauun AoWaY (z8)
S3|qeLIBA PaPaBUUN ,AOWY (T8)
ss3j9sn Y} ,Aoway (08)
uolssa.89y ,Xid (62)

pua)xa 03 Jajdwis 31 eI (8L)
12139q 3H0M 31 SX{ew 0} SUOHEIYIPOWN (££)
Burewoy x4 (9£)

Buijeuio) swos i (5£)

0dA3 ulhouue i (/)

»e3M} pUE XY SIOUIN (££)
uoneziwndo pue ,xy awos (z/)
Aduaisisuod Aoudwi (T£)
uonesydwis pue a3uumai Jofely (0£)
BuidaayasnoH (49)

2pod 3y} Jo Bulueap JouIN (89)
dnuea|d aAIsseIAl (£9)

dn ueajd apod (99)

ssauljuea|d apod (59)

dnuea)d apo) (#9)

ueapd 3po) (€9)

Buijewnioy dnuea|d (z9)

9pod AJessadauun dn ,uea|d (19)
ssaujues|d (09)

dnueap 81g (65)

dn uea|> apod diseg (gS)

s (£6)

SHomay (95)

218109y (56)

9pod anoudwi (9t)

a8eyed ajesedas 0} 3pod UoneIBaul [|e PO (St)
Ayuneag (vp)

2pod AplL (€t)

9pod nneag (zy)

2pod ,1e82138Y (Tp)

9pod ,INJINNSY (OF)
a8exjoed ,4N1NISAY (6€)
2p03 awos dn paipi] (8g)
paxeamy pue dn paipi] (£€)
BuiApy Jaypnd (9€)

Al U3 xi4 (S€)

JN3S JO 10| € PANO (1€)
1030401 |ed133E] (E€)
Jojoejal awos (zg)
1010BJ31 ||ewss (T€)

N0 J03oesaY (0F)

2)

(
ewsayds ur; A
2pod 1032843y (8

10128421 BIO|N (£

L1012e91 JOUIIA (9
A

A

A

A

LJojoejal 98nH (g
LJojoejal anissely
LJojoejau Jofe (€
J0joeja1 40 307
Ldoyoese1 2 (T2
LJoyoejai AneaH (02)
2pod pasojdeal Alinea (4T,
SISAJeue aUIBU J3dIU SPAemo) BULI0JIRSRY (8T)
1030BJ21 BAISUIXT (£T)
AJ2AISUIXa PaI0}oeal UBaQ Sey apo)) (9T)
10328421 3P0 (ST)
2po3 paioydey 191 (4T)
10328421 81g (€T)
10328421 40 UQ Y (ZT)
Jiduis (11)
LANjNRSY (OT)
L19p103Y (6)

2)
2)
)
)
)
)
)
)
)
)

LWeuy (z61) «Aowsy (9T) Jewio}3y (00T) LUy (v5) 1032849y (8)
LONPY (T6T) LUBIS9p-3y (SPT) LUBIS9pY (66) .exed-ay (g5) .Bexoed 3y (£)
.Bexoeday (061) umoqaysnd (vv1) umoq ysnd (86) dniind (zs) dn .iind (9)
«usiiod (681) ,21Uesio (evT) MO (£6) +ZUeINPON (15) PO (S)
JeIBIN (88T) BN (TrT) XINPoARUI (96) Ll (0s) wAoldu| ()
X4 (£81) N0 403284 (T¥T) eix3 (56) «PUX3 (6) »dueyu3 (€)
LJeinsdesus (981) ,sodwodaq (ovT) 81D (v6) dn-uea|d (8v) dn uesd ()
dnduiues)d (s81) dnuea) (6€T) Ino paues)) (6) «Bueyd (£y) PPV (1)
susayed

Summary. Refactoring contributors that frequently refactor the code tend to document refactoring less than developers that occasionally

f the

refactoring would be sufficient, in contrast to the rest of developers that provide descriptive refactoring documentation to the performed

, 8ENErIC expression o

perform refactoring. Our conjecture is that top refactoring contributors found that the changes are clear, and so

refactoring activity.

AlOmar et al 21

100 %
90 % - B
35.8
80% |- 42.8 |
56.8
0% | B 59-9 62.1/62.0 N
70.5 668 70.0 67.4[66.5
73-4l75 0 75.3
L 78.9 N
60 % 79.780.4 553
89.3
67.3
50% [0o. 100.q 100.¢100.d 100. h00.dLoo. B
40% |- — -
64.2 —
30% - 57.2 n
: 43.2 [
20% |~ s T 40:1 37.938.0 n
29.5 33:2 30.0 B [E
26.6055 ¢ 24.7
- 1 21.1 .
10% 20-3l19.6 16.7
10.7
3.0
0%
e O O & H & O A & & & L W@ Q@ O @ & O .& A% & &
R, ¢ 97 Y X RN] () X O X X] S Q¥ XX
Q £ & o & SUFSE e X S 0 X
20 @ @ N el T AT e et R TS e T’
X X C e O e N7 > R <& N SR\
ST T S0 T 8 S N e S e S
O < < © @ ¥ ¢ 50 ARG TS FE P
& Y S o ¥ >
xS AR\ Q
<</+ O @
V\ NG
&

O Top 5% developers O Rest of developers

FIGURE 14 Distribution of refactoring commits labeled with the keyword ‘Refactor’ performed by the top 5 % and the remaining set of developers

5 | RESEARCH IMPLICATIONS AND FUTURE DIRECTIONS

The main implications of this study are as follows:

¢ Improving the design through fixing code smells is not the main driver for top contributed and less contributed developers to refactor their
code bases. Our RQ3 finding has major implications for facilitating refactoring support for developers. It may be necessary for future tools
to motivate developers not only by pointing out how they can refactor code smells, but how the refactoring will help them from a multi-
faceted point of view, i.e., what are all of the characteristics that this refactoring will improve? Further, this implication makes it clear that
we need to study the context around different refactorings to understand why developers perform them so that recommendation systems

can be made to mimic this reasoning whenever it is found that the reasoning is based on a solid foundation.

¢ Encouraging continuous refactoring as part of making code changes. Refactoring is an integral part of the software development process.
To increase the efficiency of refactoring techniques, it is important to know when and who should refactor the code. Our finding shows
that top refactoring contributors perform the majority of refactoring. To improve the state of practice of refactoring, the refactoring tasks
should be distributed evenly between developers. Further, it is noticeable from our RQ3 finding that developers interleave refactoring
with other development-related tasks (e.g., add features and fix bugs). Since the impact of this activity on quality of the code is unclear,
future developers are encouraged not to create new features during the refactoring process. Instead, it is better to refactor the code
before updating the code. In their study of refactoring practice in modern code review at Xerox, AlOmar et al.%Z found that participants
acknowledged that mixing refactoring with any other activity is a potential problem as the behavior preservation cannot be guaranteed
and this task might introduce new bugs. Moreover, a recent study®! shows there are different approaches to test if the transformation is
behaviorally preserved. We can now encourage developers with all levels of expertise to test the performed refactoring using the suitable

approach.

AlOmar et al

100 %
90% |- -
80% |- -
48.8 45.6
52.0(51.4[53 1 52.0052.4 49.2 52.9]53.4[53.4 “1s3.3 49-T55 3[52.2 54.3|53.2 4.6 52.8 50.9/50.9/50.3]51.1]48-9 aa0
0%+ |
60% |- -
50% - | 100.0| — 100.d — — I N 100. .
40% |- -
30% - i
51.2 54.4
48.0]48.6 46 o 48.0[47.6]°"® 47.1|46.6]46.5 “as7 P08 a7 7la7.8 45.7|46.8) P 49.1(49.1(49-7f4g.9|20-2 46.0
20% - =
10% |- =
0%
< S O & H & O <@ & @ L D @ @ D @ O @ & O &N & &
KPS E P P Y E P E S & N & P P QP
RO & P @@ P PP o T P o\b RSN SIS P P o
I & IGF @ W F L 0T @7 P I W 07 0
X X 9 & >
EFE L ELECEEEE L @ W F RN @ e’
&€ L LE S & F O AN e S R P N
NN K LG < & & & RN & e <R
¢
& Y S o ¥ < G
& @ >] o
< Q9 Y
Q
&

O Top 5% developers O Rest of developers

FIGURE 15 Distribution of refactoring commits labeled with the SAR patterns performed by the top 5 % and the remaining set of developers

¢ Improving the quality of refactoring documentation. Our study helps us understand refactoring documentation practices that trigger the
need to explore the motivation behind refactoring. The study helps future developers to follow best documentation practices and improve
the quality of the refactoring documentation. Further, the refactoring motivation categories tell the opinion of developers, so it is important
for managers to learn developers’ opinions and feelings especially for distributed software development practices. If developers do not
document, managers will not know their intention. Since software engineering is a human-centric process, it is important for managers to
understand the people’s intention to work on the team through their documentation.

o Need for better tools to support the documentation of refactorings for developers at all experience levels. Since the documentation using
commit messages is usually written using natural language, and generally conveys some information about the commit they represent,
writing high-quality documentation becomes vital for development and maintenance tasks€283, As we found from RQ4 that refactoring
contributors who frequently refactor the code tend to less document refactoring activities than the remaining set of developers, we plan
to build a generative model based on refactoring documentation quality dimensions to automatically document refactoring properly while
ensuring that there is no inconsistency between the code changes and refactoring documentation. This facilitates the automatic generation
of refactoring documentation using the list of Self-Affirmed Refactoring patterns identified in136133184] To demonstrate its applicability, we

plan to conduct a pilot study with experts in order to assess the framework based on the refactoring documentation quality dimensions.

o Better understanding of refactoring best practices. Our study reveals details about developers refactoring practices. Understanding code
refactoring best practices and learning from experienced developers would represent an important asset for junior developers. To push
the frontier of refactoring in practice, it would be interesting to investigate the difference between top contributed and less contributed
developers in terms of distributions of refactoring operations, i.e., we aim to see if any specific refactoring types are highly solicited by one
group compared to the other. As previous studies have already shown, some refactoring operations tend to be more complex than others4,

and so it is interesting for us to validate it in practice. Further, since our study sheds light on the driver behind refactoring performed by

AlOmar et al | 23

different groups of developers, future work can focus on recommending who should refactor the code and proposing the best solutions to

refactorings.

¢ Impact of developer’s experience on software quality. One potential research direction is to study whether developer experience is one of
the factors that might contribute to the significant improvement of the quality metrics that are aligned with developer perception tagged in
the commit messages. In other words, we would like to evaluate the top contributors refactoring practice against all the rest of refactoring
contributors by assessing their contributions on the main internal quality attributes improvement (e.g., cohesion, coupling, and complexity).
Furthermore, previous studies analyzed the impact of refactorings on structural metrics and quality attributes2221812 |t would be interesting
to revisit such analysis while taking into account the degree of expertise of the refactoring contributors. As developers with larger experience
and managerial roles have better exposure to the system’s design, it is expected that their restructurings are of better quality, and this can

be empirically demonstrated.

o Investigating refactoring (mis)use. With regards to the analysis of refactoring and design quality, previous studies investigated how refac-
torings can be responsible for introducing code smells, and so hindering the design quality®2. It would be interesting to verify whether such
unexpected results can correlate with the developer’s experience. Along with hindering design quality, the misuse of refactoring can also
be responsible for bugs8Z and various studies have proposed testing strategies to make refactoring safer<4€8, One of our future direc-
tions is to also correlate the bug-proneness of refactorings with the degree of expertise of the contributors. It is assumed that the lack of
functional knowledge may facilitate the introduction of bugs, but this is subject to empirical validation as well.

6 | THREATS TO VALIDITY

The first threat is that our analysis is restricted to only open-source, Java, Git-based repositories. However, we were still able to analyze projects that
are highly varied in size, contributors, number of commits, and refactorings. Additionally, the representativeness of the dataset can be considered
as a threat to this study. However, we mitigate this threat by utilizing 800 engineered projects that have also been part of a prior study on
refactoring®?. Furthermore, the projects are of varying sizes, contributors, and refactoring operations.

The accuracy of the refactoring detection tool also poses a threat to our study. However, previous studies2%4Y report on high precision and recall
scores for Refactoring Miner. However, a drawback to using Refactoring Miner is that the study is limited to Java projects. Our future work includes
the use of refactoring mining tools that support other programming languages, such as RefDiff2¢, to expand the representativeness of our dataset.

Another potential threat to validity relates to our findings regarding counting the reported SAR patterns. Due to the large number of commit
messages, we have not performed a manual validation to remove false positive commit messages. Thus, this may have an impact on our findings.

A major threat to validity is related to the calculation of experience. Obtaining the experience of each and every developer is a challenge for
our study, given the volume of data in our dataset and also that experience can be subjective. Hence, we adopted a mechanism (i.e., DCR), used
by prior researchZ252 where we utilized project contributions as a proxy for experience. The reasoning behind the measurement assumes that the
longer a developer is involved in a project, and the more they contribute to it, the more experienced they become. Such an assumption may not
hold for some specific scenarios; however, since the projects in our dataset are heterogeneous in nature, our assumption holds. It is also critical to
mention that we are assessing the developer’s experience with respect to one project, and not looking at the broader aspect of their development
expertise. In this context, developer experience indicates the degree to which they contributed to a given code base. Therefore, the measurement

of developers contributions as a mean of experience holds, as our experiments our primarily focused on code changes.

7 | CONCLUSION

We present a study of the level of contribution of developers that apply refactorings. Prior studies use smaller samples to study similar questions;
however, in our study, we have examined a more extensive and representative set of systems by comparison. Further, we explored developers
practice in documenting refactoring and the distribution of refactoring operation per category. Since we can confirm results from prior studies,
we have identified a way to obtain similar results automatically. This means that it is possible to now study the impact of developer experience
on a larger scale. As for the refactoring documentation and its relation to developers contribution, we found that refactoring contributors who
occasionally refactor the code, tend to document refactoring more than the remaining set of developers who frequently perform refactoring.

In future work, we plan to leverage the results from this study to determine specific types of refactorings made by developers at different
contribution levels. We would also like to explore ways to leverage this data to help suggest/recommend refactorings or suggest/recommend
refactoring methodology based on the developers level of experience. Additionally, our empirical evidence can help future work to investigate the

importance of experience in recommending who should refactoring the code.

24

| AlOmar et al

ACKNOWLEDGMENTS

We would like to thank the authors of Refactoring Miner for publicly providing it.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Codabux Z, Williams B. Managing technical debt: An industrial case study. In: 2013 4th International Workshop on Managing Technical Debt

(MTD). IEEE. ; 2013: 8-15.

. Bavota G, De Lucia A, Di Penta M, Oliveto R, Palomba F. An experimental investigation on the innate relationship between quality and

refactoring. Journal of Systems and Software 2015; 107.

. Fontana FA, Braione P, Zanoni M. Automatic detection of bad smells in code: An experimental assessment.. Journal of Object Technology 2012;

11(2): 5-1.

. Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A, Poshyvanyk D. Detecting bad smells in source code using change history information.

In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE. ; 2013: 268-278.

. Palomba F, Panichella A, De Lucia A, Oliveto R, Zaidman A. A textual-based technique for smell detection. In: 2016 IEEE 24th international

conference on program comprehension (ICPC). IEEE. ; 2016: 1-10.

. Bavota G, De Lucia A, Marcus A, Oliveto R. Recommending refactoring operations in large software systems. In: Recommendation Systems in

Software Engineering. Springer. 2014 (pp. 387-419).

. Mkaouer MW, Kessentini M, Bechikh S, Deb K, O Cinnéide M. High dimensional search-based software engineering: finding tradeoffs among

15 objectives for automating software refactoring using NSGA-III. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation. ACM. ; 2014: 1263-1270.

. Mkaouer W, Kessentini M, Shaout A, et al. Many-objective software remodularization using NSGA-11l. ACM Transactions on Software Engineering

and Methodology (TOSEM) 2015; 24(3): 1-45.

. Mkaouer MW, Kessentini M, Cinnéide MO, Hayashi S, Deb K. A robust multi-objective approach to balance severity and importance of

refactoring opportunities. Empirical Software Engineering 2017; 22(2): 894-927.

Mkaouer MW, Kessentini M, Bechikh S, O'Cinnéide M, Deb K. Software refactoring under uncertainty: a robust multi-objective approach. In:
Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation. ACM. ; 2014: 187-188.

Rizzi L, Fontana FA, Roveda R. Support for architectural smell refactoring. In: Proceedings of the 2nd International Workshop on Refactoring. ACM.
; 2018: 7-10.

Terra R, Valente MT, Miranda S, Sales V. JMove: A novel heuristic and tool to detect move method refactoring opportunities. Journal of Systems
and Software 2018; 138: 19-36.

Oliveira dMC, Freitas D, Bonifacio R, Pinto G, Lo D. Finding needles in a haystack: Leveraging co-change dependencies to recommend
refactorings. Journal of Systems and Software 2019; 158: 110420.

Xing Z, Stroulia E. Refactoring detection based on umldiff change-facts queries. In: 2006 13th Working Conference on Reverse Engineering. |IEEE.
; 2006: 263-274.

Kim M, Gee M, Loh A, Rachatasumrit N. Ref-Finder: a refactoring reconstruction tool based on logic query templates. In: Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software engineering. ACM. ; 2010: 371-372.

Silva D, Valente MT. RefDiff: detecting refactorings in version histories. In: 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). IEEE. ; 2017: 269-279.

Xing Z, Stroulia E. Refactoring practice: How it is and how it should be supported-an eclipse case study. In: 2006 22nd IEEE International
Conference on Software Maintenance. IEEE. ; 2006: 458-468.

AlOmar et al | 25

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Pinto GH, Kamei F. What programmers say about refactoring tools? an empirical investigation of stack overflow. In: Proceedings of the 2013
ACM workshop on Workshop on refactoring tools. ACM. ; 2013: 33-36.

Yoshida N, Saika T, Choi E, Ouni A, Inoue K. Revisiting the relationship between code smells and refactoring. In: IEEE 24th International
Conference on Program Comprehension (ICPC). IEEE. ; 2016: 1-4.

Silva D, Tsantalis N, Valente MT. Why we refactor? confessions of github contributors. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM. ; 2016: 858-870.

Peruma A, Mkaouer MW, Decker MJ, Newman CD. An empirical investigation of how and why developers rename identifiers. In: Proceedings
of the 2nd International Workshop on Refactoring. ACM. ; 2018: 26-33.

AlOmar EA, Peruma A, Newman CD, Mkaouer MW, Ouni A. On the relationship between developer experience and refactoring: An exploratory
study and preliminary results. In: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops. ACM. ; 2020:
342-349.

Tsantalis N, Guana V, Stroulia E, Hindle A. A multidimensional empirical study on refactoring activity. In: Proceedings of the 2013 Conference of
the Center for Advanced Studies on Collaborative Research. IBM Corp. ; 2013: 132-146.

Kim M, Zimmermann T, Nagappan N. An empirical study of refactoringchallenges and benefits at microsoft. IEEE Transactions on Software
Engineering 2014; 40(7): 633-649.

Newman CD, Mkaouer MW, Collard ML, Maletic JI. A study on developer perception of transformation languages for refactoring. In:
Proceedings of the 2nd International Workshop on Refactoring. ACM. ; 2018: 34-41.

Stroggylos K, Spinellis D. Refactoring-Does It Improve Software Quality?. In: Software Quality, 2007. WoSQ’07: ICSE Workshops 2007. Fifth
International Workshop on. IEEE. ; 2007: 10-10.

Ratzinger J, Sigmund T, Gall HC. On the Relation of Refactorings and Software Defect Prediction. In: Proceedings of the 2008 International
Working Conference on Mining Software Repositories. MSR '08. ACM. ACM; 2008; New York, NY, USA: 35-38

Murphy-Hill E, Parnin C, Black AP. How we refactor, and how we know it. IEEE Transactions on Software Engineering 2012; 38(1): 5-18.

Soares G, Gheyi R, Murphy-Hill E, Johnson B. Comparing approaches to analyze refactoring activity on software repositories. Journal of Systems
and Software 2013; 86(4): 1006-1022.

Zhang D, Li B, Li Z, Liang P. A Preliminary Investigation of Self-Admitted Refactorings in Open Source Software. In: IEEE. ; 2018

AlOmar EA, Mkaouer MW, Ouni A. Can Refactoring Be Self-Affirmed? An Exploratory Study on How Developers Document Their Refactoring
Activities in Commit Messages. In: Proceedings of the 3rd International Workshop on Refactoring. IWOR '19. IEEE. ; 2019.

AlOmar EA. Towards Better Understanding Developer Perception of Refactoring. In: 2019 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). |IEEE. : 624-628.

AlOmar EA, Peruma A, Mkaouer MW, Newman CD, Ouni A, Kessentini M. How we refactor and how we document it? On the use of supervised
machine learning algorithms to classify refactoring documentation. Expert Systems with Applications 2020: 114176.

Soares G, Cavalcanti D, Gheyi R, Massoni T, Serey D, Cornélio M. Saferefactor-tool for checking refactoring safety. 2009.

Fowler M, Beck K, Brant J, Opdyke W, Roberts d. Refactoring: Improving the Design of Existing Code. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc. . 1999.

AlOmar EA, Mkaouer MW, Ouni A. Toward the automatic classification of Self-Affirmed Refactoring. Journal of Systems and Software 2020:
110821.

AlOmar EA, Mkaouer MW, Ouni A, Kessentini M. On the impact of refactoring on the relationship between quality attributes and design
metrics. In: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE. ; 2019: 1-11.

Munaiah N, Kroh S, Cabrey C, Nagappan M. Curating GitHub for engineered software projects. Empirical Software Engineering 2017; 22(6):
3219-3253.

26 | AlOmar et al

39. Peruma A, Mkaouer MW, Decker MJ, Newman CD. Contextualizing Rename Decisions using Refactorings and Commit Messages. In: 2019
19th International Working Conference on Source Code Analysis and Manipulation (SCAM). IEEE. ; 2019: 74-85

40. Fakhoury S, Roy D, Hassan A, Arnaoudova V. Improving source code readability: theory and practice. In: 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). IEEE. ; 2019: 2-12.

41. Tsantalis N, Mansouri M, Eshkevari LM, Mazinanian D, Dig D. Accurate and efficient refactoring detection in commit history. In: Proceedings of
the 40th International Conference on Software Engineering. ACM. ; 2018.

42. Moser R, Sillitti A, Abrahamsson P, Succi G. Does refactoring improve reusability?. In: International conference on software reuse. Springer. ;
2006: 287-297.

43. Palomba F, Zaidman A, Oliveto R, De Lucia A. An exploratory study on the relationship between changes and refactoring. In: 2017 [EEE/ACM
25th International Conference on Program Comprehension (ICPC). IEEE. ; 2017: 176-185.

44, Pantiuchina J, Zampetti F, Scalabrino S, et al. Why developers refactor source code: A mining-based study. ACM Transactions on Software
Engineering and Methodology (TOSEM) 2020; 29(4): 1-30.

45, Paixao M, Uchéa A, Bibiano AC, et al. Behind the Intents: An In-depth Empirical Study on Software Refactoring in Modern Code Review. 17th
MSR 2020.

46. AlOmar EA, Rodriguez PT, Bowman J, et al. How Do Developers Refactor Code to Improve Code Reusability?. In: International Conference on
Software and Software Reuse. Springer. ; 2020: 261-276.

47. AlOmar EA, AlRubaye H, Mkaouer MW, Ouni A, Kessentini M. Refactoring Practices in the Context of Modern Code Review: An Industrial
Case Study at Xerox. In: 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). |IEEE.
; 2021: 348-357.

48. JiangS, Armaly A, McMillan C. Automatically generating commit messages from diffs using neural machine translation. In: 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE. ; 2017: 135-146.

49. Mauczka A, Huber M, Schanes C, Schramm W, Bernhart M, Grechenig T. Tracing Your Maintenance Work - A Cross-Project Validation of an
Automated Classification Dictionary for Commit Messages: 301-315; Berlin, Heidelberg: Springer Berlin Heidelberg . 2012

50. FuY, Yan M, Zhang X, Xu L, Yang D, Kymer JD. Automated classification of software change messages by semi-supervised Latent Dirichlet
Allocation. Information and Software Technology 2015; 57: 369-377.

51. Silva Maldonado dE, Shihab E, Tsantalis N. Using natural language processing to automatically detect self-admitted technical debt. IEEE
Transactions on Software Engineering 2017; 43(11): 1044-1062.

52. Kochhar PS, Thung F, Lo D. Automatic fine-grained issue report reclassification. In: Engineering of Complex Computer Systems (ICECCS), 2014
19th International Conference on. IEEE. ; 2014: 126-135.

53. Le TDB, Linares-Vasquez M, Lo D, Poshyvanyk D. Rclinker: Automated linking of issue reports and commits leveraging rich contextual
information. In: 2015 IEEE 23rd International Conference on Program Comprehension. IEEE. ; 2015: 36-47.

54. Lane H, Hapke H, Howard C. Natural Language Processing in Action: Understanding, Analyzing, and Generating Text with Python. Manning
Publications Company . 2019.

55. Bird S. NLTK: The Natural Language Toolkit. ArXiv 2002; cs.CL/0205028.

56. Singh R, Mangat N. Elements of Survey Sampling. Texts in the Mathematical SciencesSpringer Netherlands . 2013.

57. Zheng A, Casari A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media . 2018.

58. Manning C, Raghavan P, Schiitze H. Introduction to Information Retrieval. Cambridge University Press . 2008.

59. Lin S, Ma Y, Chen J. Empirical Evidence on Developer's Commit Activity for Open-Source Software Projects.. In: SEKE. . 13. IEEE. ; 2013:

455-460.

AlOmar et al | 27

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Kowsari K, Jafari Meimandi K, Heidarysafa M, Mendu S, Barnes L, Brown D. Text classification algorithms: A survey. Information 2019; 10(4):
150.

Tan CM, Wang YF, Lee CD. The use of bigrams to enhance text categorization. Information processing & management 2002; 38(4): 529-546.

Deng N, Tian Y, Zhang C. Support Vector Machines: Optimization Based Theory, Algorithms, and Extensions. Chapman & Hall/CRC Data Mining
and Knowledge Discovery SeriesTaylor & Francis . 2012.

Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. 2011; 2(3). |doi: 10.1145/1961189.1961199
Breiman L. Classification and Regression Trees. CRC Press . 2017.

Hindle A, Ernst NA, Godfrey MW, Mylopoulos J. Automated Topic Naming to Support Cross-project Analysis of Software Maintenance
Activities. In: Proceedings of the 8th Working Conference on Mining Software Repositories. MSR '11. ACM. ; 2011; New York, NY, USA: 163-172

Levin S, Yehudai A. Boosting Automatic Commit Classification Into Maintenance Activities By Utilizing Source Code Changes. In: Proceedings
of the 13th International Conference on Predictive Models and Data Analytics in Software Engineering. PROMISE. ACM. ACM; 2017; New York,
NY, USA: 97-106

Honel S, Ericsson M, Lowe W, Wingkvist A. Importance and Aptitude of Source code Density for Commit Classification into Maintenance
Activities. In: The 19th IEEE International Conference on Software Quality, Reliability, and Security. IEEE. ; 2019.

SKlearn . 1.12. Multiclass and multilabel algorithms — scikit-learn 0.23.2 documentation. https:/scikit-learn.org/stable/modules/multiclass.
html; 2007.

SKlearn . sklearn.svm.SVC — scikit-learn 0.23.2 documentation. https:/scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#
sklear.svm.SVC; 2007.

Dangeti P. Statistics for Machine Learning. Packt Publishing . 2017.
Project Website. https:/smilevo.github.io/self-affirmed-refactoring/; .

Krutz DE, Munaiah N, Peruma A, Wiem Mkaouer M. Who Added That Permission to My App? An Analysis of Developer Permission Changes
in Open Source Android Apps. In: 2017 IEEE/ACM 4th International Conference on Mobile Software Engineering and Systems (MOBILESoft). IEEE.
;2017: 165-169

Tukey JW. Exploratory data analysis. 2. Reading, Mass. . 1977.

Murphy-Hill E, Black AP. Breaking the Barriers to Successful Refactoring: Observations and Tools for Extract Method. In: Proceedings of the 30th
International Conference on Software Engineering. ICSE '08. ACM. Association for Computing Machinery; 2008; New York, NY, USA: 421-430

https:/github.com/jenkinsci/subversion-plugin. https:/github.com/jenkinsci/subversion-plugin/commit/179fec8; .

https:/github.com/dustin/java-memcached-client. https:/github.com/dustin/java-memcached-client/commit/
55f6911e82789eb6cbadlceccc66b1al0e609ffb5; .

https:/github.com/ismavatar/lateralgm. https://github.com/ismavatar/lateralgm/commit/23dfe805242599bd5abc2edfé6eaal1c5379e1287;

https:/github.com/adangel/pmd. https://github.com/adangel/pmd/commit/7f113dfe7ebc0a015c14a9c02637e39302000d01; .
https:/github.com/jawi/ols. https://github.com/jawi/ols/commit/de2b95c01d3f998256abaaddaffa6fb1536f9b39; .
Conover WJ. Practical nonparametric statistics. 350. John Wiley & Sons . 1998.

AlOmar EA, Mkaouer MW, Newman C, Ouni A. On Preserving the Behavior in Software Refactoring: A Systematic Mapping Study. Information
and Software Technology 2021.

Treude C, Middleton J, Atapattu T. Beyond accuracy: assessing software documentation quality. In: Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. ACM. ; 2020: 1509-1512.

http://dx.doi.org/10.1145/1961189.1961199
https://scikit-learn.org/stable/modules/multiclass.html
https://scikit-learn.org/stable/modules/multiclass.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklear.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklear.svm.SVC
https://smilevo.github.io/self-affirmed-refactoring/
https://github.com/jenkinsci/subversion-plugin/commit/179fec8
https://github.com/dustin/java-memcached-client/commit/55f6911e82789e6cbad1ceccc66b1a10e609ffb5
https://github.com/dustin/java-memcached-client/commit/55f6911e82789e6cbad1ceccc66b1a10e609ffb5
https://github.com/ismavatar/lateralgm/commit/23dfe805242599bd5abc2edf6eaa11c5379e1287
https://github.com/adangel/pmd/commit/7f113dfe7ebc0a015c14a9c02637e39302000d01
https://github.com/jawi/ols/commit/de2b95c01d3f998256abaaddaffa6fb1536f9b39

28 | AlOmar et al

83. Plosch R, Dautovic A, Saft M. The value of software documentation quality. In: 2014 14th International Conference on Quality Software. IEEE. ;
2014: 333-342.

84. AlOmar EA, Mkaouer MW, Ouni A. Mining and Managing Big Data Refactoring for Design Improvement: Are We There Yet?. Knowledge
Management in the Development of Data-Intensive Systems: 127-140.

85. Tufano M, Palomba F, Bavota G, et al. When and why your code starts to smell bad. In: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering. . 1. IEEE. ; 2015: 403-414.

86. Alves EL, Song M, Kim M. RefDistiller: a refactoring aware code review tool for inspecting manual refactoring edits. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM. ; 2014: 751-754.

87. Bavota G, De Carluccio B, De Lucia A, Di Penta M, Oliveto R, Strollo O. When does a refactoring induce bugs? an empirical study. In: IEEE 12th
International Working Conference on Source Code Analysis and Manipulation. IEEE. ; 2012: 104-113.

88. Soares G, Gheyi R, Serey D, Massoni T. Making program refactoring safer. IEEE software 2010; 27(4): 52-57.

	Behind the Scenes: On the Relationship Between Developer Experience and Refactoring
	Abstract
	Introduction
	Related Work
	Refactoring & Developer Experience
	Refactoring Documentation

	Study Design
	Data Collection
	Refactoring Detection
	Commit Classification Model Construction
	Data Annotation
	Text Pre-Processing
	Training and Test Data Preparation
	Feature Extraction
	Model Training
	Model Tuning & Evaluation
	Optimized Model

	Data Analysis

	Results & Discussion
	RQ1. What is the distribution of experience among developers that perform refactorings?
	RQ2. Do developers with more contribution refactor code more often?
	RQ3. What triggers developers to refactor the code?
	RQ4. Does developer's experience influence the quality of refactoring documentation?

	Research implications and future directions
	Threats to Validity
	Conclusion
	Acknowledgments
	References

