
An Empirical Study on the Impact of Code
Duplication-aware Refactoring Practices on Quality

Metrics

Eman Abdullah AlOmara,∗

aStevens Institute of Technology, Hoboken, NJ, USA

Abstract

Context: Code refactoring is widely recognized as an essential software en-
gineering practice that improves the understandability and maintainability of
source code. Several studies attempted to detect refactoring activities through
mining software repositories, allowing one to collect, analyze, and get actionable
data-driven insights about refactoring practices within software projects.
Objective: Our goal is to identify, among the various quality models presented
in the literature, the ones that align with the developer’s vision of eliminating
duplicates of code, when they explicitly mention that they refactor the code to
improve them.
Method: We extract a corpus of 332 refactoring commits applied and doc-
umented by developers during their daily changes from 128 open-source Java
projects. In particular, we extract 32 structural metrics from which we identify
code duplicate removal commits with their corresponding refactoring operations,
as perceived by software engineers. Thereafter, we empirically analyze the im-
pact of these refactoring operations on a set of common state-of-the-art design
quality metrics.
Results: The statistical analysis of the results obtained shows that (i) some
state-of-the-art metrics are capable of capturing the developer’s intention of
removing code duplication; and (ii) some metrics are being more emphasized
than others. We confirm that various structural metrics can effectively represent
code duplication, leading to different impacts on software quality. Some metrics
contribute to improvements, while others may lead to degradation.
Conclusion: Most of the mapped metrics associated with the main quality
attributes successfully capture developers’ intentions for removing code duplic-
ates, as is evident from the commit messages. However, certain metrics do not
fully capture these intentions.

Keywords: Refactoring, Quality, Code Duplicates, Metrics

∗Corresponding author
Email address: ealomar@stevens.edu (Eman Abdullah AlOmar)

Preprint submitted to Journal of LATEX Templates 7th February 2025

ar
X

iv
:2

50
2.

04
07

3v
1

 [
cs

.S
E

]
 6

 F
eb

 2
02

5

1. Introduction

Duplicating a code fragment involves the process of copying and pasting
it, with or without minor modifications, into another section of the codebase.
Although this may appear to be an intuitive way to reuse code, the presence of
duplicate code introduces a set of challenges in the maintenance and evolution of
software systems [1]. Recent studies emphasize that duplicate code has become
a significant issue that affects both developers and researchers. For example,
fixing a bug in a duplicate code fragment may require applying the same fix
to all instances of that code [2]. This can result in a slowdown of maintenance
efforts and potentially lead to the widespread propagation of bugs throughout
the codebase. Consequently, in response to these challenges, the elimination of
duplicate code through refactoring has become a natural and necessary course
of action [3].

Refactoring is the art of remodeling software design without altering its
functionality [4]. It is a critical software maintenance activity that developers
perform for a variety of purposes: improve program comprehension, eliminate
duplicate code, reduce complexity, manage technical debt, and remove code
smells [5, 6]. Refactoring duplicate code involves the process of taking a code
fragment and moving it to create a new method while replacing all instances of
that fragment with a call to this newly created method.

Despite the increasing emphasis on recommending refactorings through the
optimization of structural metrics and the removal of code smells, there is limited
evidence on whether developers follow these recommendations when refactoring
their code. A study by Pantiuchina et al. [7] has shown that there is a misper-
ception between state-of-the-art structural metrics, widely used as indicators for
refactoring, and what developers actually consider to be an improvement in their
source code. Furthermore, AlOmar et al. [8] reveals that most metrics that are
mapped to the main quality attributes, i.e., cohesion, coupling, and complex-
ity, capture the developer’s intentions of quality improvement reported in the
commit messages. In contrast, there is also a case in which the metrics do not
capture quality improvement as perceived by developers. This paper builds upon
our previously published paper [8]. Although earlier research primarily focused
on internal quality attributes, placing particular emphasis on whether developer
intentions regarding cohesion, coupling, complexity, inheritance, polymorphism,
encapsulation, abstraction, and size aligned with their vision of quality optim-
ization, this paper presents a more comprehensive qualitative and quantitative
approach with a focus on code duplication. Code duplication is a critical qual-
ity issue, especially with recent emphasis on developing tools for this purpose.
Furthermore, a study involving GitHub contributors has shown that they are
seriously concerned about code duplication [5]. Specifically, we extend the study
by:

• Examining which metrics are most impacted by refactorings, aiming to
identify those that closely capture the developer’s intention regarding code
duplication rather than internal quality attributes.

2

• Providing numerous qualitative examples that offer deeper insights into
the underlying reasons for instances of alignment and disparity between
quality metrics and developers’ perception of the removal of duplicate
code.

• Offering lessons and insights derived from our experiments to developers,
tool builders, and the research community, contributing to the advance-
ment of both the state-of-the-art and state-of-the-practice in code duplication-
aware refactoring practices.

• Utilizing an entirely different dataset than the previous work.

• Leveraging 32 structural metrics, which encompasses 22 distinct metrics
that were not employed in the previous paper.

We start with reviewing studies from the literature that propose quality at-
tributes of software and their corresponding measurement in the source code, in
terms of metrics. Software quality attributes are typically characterized by high-
level definitions whose interpretations allow multiple ways to calculate them in
the source code. Thus, there is little consensus on what would be the optimal
match between quality attributes and code-level design metrics. For instance,
as shown later in Section 2, the notion of complexity was the subject of many
studies that proposed several metrics to calculate it. Therefore, we investigate
which code-level metrics are more representative of the removal of high-level
code duplicates, when their optimization is explicitly stated by the developer
when applying refactorings. Furthermore, we investigate the performed refact-
oring operations, for each explicitly mentioned removal of code duplication.

Practically, we have classified 322 commits, as duplicated code removal com-
mits, by manually analyzing their messages and identifying an explicit statement
of removing duplicated code, along with detecting their refactoring activities.
We use the SmartSHARK dataset [9], and refine it by untangling each commit
to select only refactored code elements. Afterward, we calculate the values of its
corresponding structural metrics, in the files, before and after their refactorings.
And finally, we empirically compare the variation of these values, to distinguish
the metrics that are significantly impacted by the refactorings, and so they bet-
ter reflect the developer’s intention of removing code duplication. To the best of
our knowledge, no previous study has investigated the relationship between the
intention of code duplicate removal and their corresponding structural metrics,
from the developer’s perception. Our key findings show that not all state-of-
the-art structural metrics equally represent code duplication. In summary, this
extended paper makes the following key contributions:

• In our empirical investigation into the removal of duplicate code, we ex-
amine which metrics are most affected by refactorings, aiming to identify
those that closely capture the developer’s intention.

• We provide numerous qualitative examples that offer deeper insights into
the underlying reasons for instances of alignment and disparity between

3

quality metrics and developers’ perception of the removal of duplicate
code.

• We offer lessons and insights derived from our experiments to developers,
tool builders, and the research community, aiming to contribute to the
advancement of both the state-of-the-art and state-of-the-practice in code
duplication-aware refactoring practices.

• We provide our experiment package to further replicate and extend our
study. The package contains the raw data, analyzed data, statistical test
results, and custom scripts used in our research1.

The remainder of this paper is organized as follows. Section 2 reviews existing
studies related to the impact of refactoring on quality. Section 3 outlines our
empirical setup in terms of data extraction, analysis, and research question.
Section 4 discusses our findings, while the lessons learned and implications of
the research are discussed in Sections 5 and 6, respectively. Section 7 captures
any threats to the validity of our work, before concluding with Section 8.

2. Related Work

The prevailing consensus in the software refactoring literature acknowledges
its overarching aim of improving software quality and correcting poor design
and implementation practices [4]. Tables 1 and 2 illustrate two decades of work
on a long-standing question within the refactoring community: Does refactoring
improve code quality? In recent years, numerous research efforts have been made
to examine and explore the influence of refactoring on software quality [25, 23,
29, 33, 49, 56, 80, 52, 32]. Most studies have focused on measuring internal and
external quality attributes to determine the quality of a software system being
refactored. Due to space constraints, this section provides a comprehensive
review of some of these studies and a discussion of the pertinent literature on
the impact of refactoring on software quality.

Stroulia and Kapoor [11] explored the effect of size and coupling measures
on software quality after the refactoring application. Their findings indicated
that size and coupling metrics decreased after refactorings. Fioravanti et al. [81]
analyzed and described metrics, based on duplication analysis, that contribute
to the process of reengineering analysis of object-oriented. Antoniol et al. [82]
studies cloning evolution in the Linux kernel. Their main result revealed that the
Linux system does not contain a relevant fraction of code duplication. Kataoka
et al. [12] focused solely on coupling measures to study the impact of Extract
Method and Extract Class refactoring operations on the maintainability of a
C++ software system. Their study revealed a positive effect of refactoring
on system maintainability. Demeyer [13] conducted a comparative study to
investigate the impact of refactoring on performance, the results demonstrating

1https://smilevo.github.io/self-affirmed-refactoring/

4

https://smilevo.github.io/self-affirmed-refactoring/

Table 1: A summary of the literature on the impact of refactoring activities on software quality
attributes.

No. Study Year Quality Metric Internal QA External QA

1 Sahraoui et al. [10] 2000 CLD / NOC / NMO / NMI Inheritance / Coupling Fault-proneness / Maintainability
NMA / SIX / CBO / DAC
IH-ICP / OCAIC / DMMEC / OMMEC

2 Stroulia & Kapoor [11] 2001 LOC / LCOM / CC Size / Coupling Design extensibility
3 Kataoka et al. [12] 2002 Coupling measures Coupling Maintainability
4 Demeyer [13] 2002 N/A Polymorphism Performance
5 Tahvildari et al. [14] 2003 LOC / CC / CMT / Halstead’s efforts Complexity Performance / Maintainability
6 Leitch & Stroulia [15] 2003 SLOC / No. of Procedure Size Maintainability
7 Bois & Mens [16] 2003 NOM / CC / NOC / CBO Inheritance / Cohesion / Coupling / Size / Complexity N/A

RFC / LCOM
8 Tahvildari & Kontogiannis [17] 2004 LCOM / WMC / RFC / NOM Inheritance / Cohesion / Coupling / Complexity Maintainability

CDE / DAC / TCC
9 Bois et al. [18] 2004 N/A Cohesion / Coupling Maintainability
10 Bois et al. [19] 2005 N/A N/A Understandability
11 Geppert et al. [20] 2005 N/A N/A Changeability
12 Ratzinger et al. [21] 2005 N/A Coupling Evolvability

Analyzing code histories
13 Moser et al. [22] 2006 CK / MCC / LOC Inheritance / Cohesion / Coupling / Complexity Reusability
14 Wilking et al. [23] 2007 CC / LOC Complexity Maintainability / Modifiability
15 Stroggylos & Spinells [24] 2007 CK / Ca / NPM Inheritance / Cohesion / Coupling / Complexity N/A
16 Moser et al. [25] 2008 CK / LOC / Effort (hour) Cohesion / Coupling / Complexity Productivity
17 Shrivastava & Shrivastava [26] 2008 NOA / NOC / NOM / CC Inheritance / Complexity / Size N/A

TLOC / DIT
18 Higo et al. [27] 2008 CK Inheritance / Cohesion / Coupling / Complexity N/A
19 Reddy & Rao [28] 2009 DOCMA (CR) DOCMA (AR) Complexity N/A
20 Alshayeb [29] 2009 CK / LOC / FANOUT Inheritance / Cohesion / Coupling / Size Adaptability / Maintainability / Testability / Reusability

Understandability
21 Alshayeb [30] 2009 LCOM1 / LCOM2 / LCOM3 / LCOM4 / LCOM5 Cohesion N/A
22 Usha et al. [31] 2009 LCOM / CBO / WMC / RFC / CC Cohesion / Coupling / Complexity Modifiability / Modularity

CF / TCC / MHF / AHF
23 Hegedus et al. [32] 2010 CK Coupling / Complexity / Size Maintainability / Testability / Error Proneness / Changeability

Stability / Analizability
24 Shatnawi & Li [33] 2011 CK / QMOOD Inheritance / Cohesion / Coupling / Polymorphism / Size Reusability / Flexibility / Extendibility / Effectiveness

Encapsulation / Composition / Abstraction / Messaging
25 Fontana & Spinelli [34] 2011 DAC / LCOM / NOM / RFC Cohesion / Coupling / Complexity N/A

TCC / WMC
26 Alshayeb [35] 2011 CK / LOC / FANOUT Inheritance / Cohesion / Coupling / Size Adaptability / Maintainability / Testability / Reusability

Understandability
27 Lerthathairat & Prompoon [36] 2011 NLOC / NILI / CC / ILCC / NOP Cohesion / Encapsulation N/A

NOM / NFD / LCOM / LCOM-HS
28 Ó Cinnéide et al. [37] 2012 LSCC / TCC / CC / SCOM / LCOM5 Cohesion N/A
29 Ibrahim et al. [38] 2012 LCCI / LCCD / LCC / TCC Cohesion N/A

CC / Coh / LCOM3
30 Singh & Kahlon [39] 2011 CK / LCOM4 / PuF / EncF / NOD Inheritance / Cohesion / Coupling / Information hiding

Polymorphism / Encapsulation / Abstraction
31 Singh & Kahlon [40] 2012 CK / LCOM4 / PuF / EncF / NOD Inheritance / Cohesion / Coupling / Information hiding

Polymorphism / Encapsulation / Abstraction
32 Murgia et al. [41] 2012 FANIN / FANOUT Coupling N/A
33 Kannangara & Wijayanake [42] 2013 N/A N/A Analysability / Changeability / Time Behaviour / Resource Utilization
34 Veerappa & Rachel [43] 2013 RFC / DCC / CBO / MPC Coupling N/A
35 Napoli et al. [44] 2013 LCOM / CBO Cohesion / Coupling Modularity
36 Bavota et al. [45] 2013 ICP / IC-CD / CCBC Coupling N/A

37 Kumari & Saha [46] 2014 DIT / CBO / RFC / WMC Inheritance / Cohesion / Coupling / Complexity Maintainability / Reusability / Testability / Understandability
LCOM / NOM / LOC Fault proneness / Completeness / Stability / Adaptability

38 Szoke et al. [47] 2014 CC / U / NOA / NII / NAni Size / Complexity N/A
LOC / NUMPAR / NMni / NA

39 Chaparro et al. [48] 2014 RFC / CBO / DAC / MPC Inheritance / Cohesion / Coupling / Size / Complexity N/A
LOC / NOM / CC / LCOM2
LCOM5 / NOC / DIT

40 Bavota et al. [49] 2015 CK / LOC / NOA / NOO Inheritance / Cohesion / Coupling / Size / Complexity N/A
C3 / CCBC

41 Kannangara & Wijayanake [50] 2015 CC / DIT / CBO / LOC Maintainability index / Complexity / Coupling / Inheritance Analysability / Changeability / Time Behaviour / Resource Utilization
42 Gatrell & Counsel [51] 2015 N/A N/A change & fault-proneness
43 Cedrim at al. [52] 2016 LOC / CBO / NOM / CC Cohesion / Coupling / Complexity N/A

FANOUT / FANIN

5

Table 2: Continued from previous page.

No. Study Year Quality Metric Internal QA External QA

44 Malhotra & Chug [53] 2016 CK Cohesion / Coupling / Complexity / Inheritance Understandability / Modifiability / Extensibility / Reusability
Level of Abstraction

45 Mkaouer et al. [54] 2016 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness

46 Kaur & Singh [55] 2017 WMC / NOI / RFC / TCLOC Coupling / Complexity / Size Maintainability
TLLOC / TNOS / CI

47 Chavez et al. [56] 2017 CBO / WMC / DIT / NOC Inheritance / Cohesion / Coupling / Size / Complexity N/A
LOC / LCOM2 / LCOM3 / WOC
TCC / FANIN / FANOUT / CINT
CDISP / CC / Evg / NPATH
MaxNest / IFANIN / OR / CLOC
STMTC / CDL / NIV / NIM / NOPA

48 Szoke et al. [57] 2017 CK N/A Maintainability
49 Bashir et al. [58] 2017 QMOOD N/A Modifiability / Analyzability / Understandability / Maintainability
50 Mumtaz et al. [59] 2018 CK / CCC / CDP / CCDA / COA N/A Security

CMW / CMAI / CAAI / CAIW
51 Pantiuchina et al. [7] 2018 LCOM / CBO / WMC / RFC Cohesion / Coupling / Complexity Readability

C3 / B&W / SRead
52 Alizadeh & Kessentini [60] 2018 QMOOD N/A Reusability / Flexibility / Understandability / Functionality

Extendibility / Effectiveness
53 Alizadeh et al. [61] 2019 QMOOD N/A Reusability / Flexibility / Understandability / Functionality

Extendibility / Effectiveness
54 Techapalokul & Tilevich [62] 2019 LOC / Complex Script Dens / No. Literals N/A N/A

Long Script Dens. / Procedure Dens. / No. Global Var
No. Create Clone Of.

55 Counsell et al. [63] 2019 CBO Coupling N/A
56 Fakhoury et al. [64] 2019 Buse & Weimer / Dorn / Scalabrino / Posnett Cohesion / Coupling / Size / Complexity Readability

LCOM 5 / WMC / RFC / MLOC / FLOC
Halstead Difficulty / Halstead Effort / Maintainability index / MCC
Nesting level / Doc LOC / Comment Density / API Doc
Public Undoc API / Public Doc API / # Parantheses /
Number of Incoming Invocations

57 AlOmar et al. [8] 2019 CK / FANIN / FANOUT / CC / NIV / NIM Inheritance / Cohesion / Coupling / Complexity N/A
Evg / NPath / MaxNest / IFANIN Size / Polymorphism / Encapsulation / Abstraction
LOC / CLOC / CDL / STMTC

58 Rebai et al. [65] 2019 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness

59 Alizadeh et al. [66] 2019 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness

60 Alizadeh et al. [67] 2020 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness

61 Rebai et al. [68] 2020 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness

62 Fernandes et al. [69] 2020 CBO / WMC / DIT / NOC Inheritance / Cohesion / Coupling / Size / Complexity N/A
LOC / LCOM2 / LCOM3 / WOC
TCC / FANIN / FANOUT / CINT
CDISP / CC / Evg / NPATH
MaxNest / IFANIN / OR / CLOC
STMTC / CDL / NIV / NIM / NOPA

63 AlOmar et al. [70] 2020 CK / CC / LOC Inheritance / Cohesion / Coupling / Complexity / Size Reusability
64 Bibiano et al. [71] 2020 LCOM2 / CBO / MAXNest / CC Cohesion / Coupling / Complexity / Size N/A

LOC / CLOC / STMTC / NIV
NIM / WMC

65 Abid et al. [72] 2020 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness / Security

66 Abid et al. [73] 2021 QMOOD N/A Reusability / Flexibility / Understandability / Functionality
Extendibility / Effectiveness / Security

67 Riansyah & Mursanto [74] 2020 CINT / CDISP Coupling N/A
68 Iyad et al. [75] 2020 CK / CC / TLOC / MFA / NBD Inheritance / Cohesion / Coupling / Complexity / Size N/A

NSC / CE
69 Hamdi et al. [76] 2021 CBO / WMC / DIT / RFC Inheritance / Cohesion / Coupling / Complexity / Size N/A

LCOM / TCC / LOC / LCC
NOSI / VQTY

70 AlOmar et al. [77] 2021 CK / CC / LOC / NPATH Inheritance / Cohesion / Coupling / Complexity / Size Reusability
MaxNest / IFANIN / CDL / CLOC
FANIN / FANOUT / STMTC / NIV

71 Sellitto et al. [78] 2021 CIC / CIC_syc / ITID / NMI / CR N/A Readability
NM / TC / NOC / NOC_norm

72 Ouni et al. [79] 2023 LCOM / CBO / NOSI / TCC / NIV / IFANIN Coupling / Cohesion / Complexity / Inheritance / Size N/A
RFC / FANIN / WMC / VQYT / NIM
FANOUT / CC / Evg / MaxNest / DIT
LOC / BLOC / CLOC / STMTC / NOC

6

an improvement in program performance after refactoring. In addition, Sahraoui
et al. [10] used coupling and inheritance measures to automatically identify
potential antipatterns and predict scenarios in which refactoring could enhance
software maintainability. The authors found that quality metrics can help bridge
the gap between design improvement and automation, but in some situations the
process cannot be fully automated, as it requires the programmer’s validation
through manual inspection.

Tahvildari et al. [14] introduced a software transformation framework that
connects software quality requirements, such as performance and maintainab-
ility, with the transformation of the program to enhance the targeted qualit-
ies. Their results showed that utilizing design patterns increases the system’s
maintainability and performance. In a related study, Tahvildari and Konto-
giannis [17] applied the same framework to assess four object-oriented meas-
ures (cohesion, coupling, complexity, and inheritance) together with software
maintainability. Leitch and Stroulia [15] utilized dependency graph-based tech-
niques to investigate the impact of two refactorings, namely, Extract Method
and Move Method, on software maintenance using two small systems. Their
findings demonstrated that refactoring improved quality by reducing the size of
the design, increasing the number of procedures, decreasing data dependencies
and minimizing regression testing. Bios and Mens [16] proposed a framework
to analyze the impact of three refactorings on five internal quality attributes
(i.e., cohesion, coupling, complexity, inheritance, and size). Their results indic-
ated both positive and negative impacts on the selected measures. Bios et al.
[18] provided a set of guidelines to optimize cohesion and coupling measures.
Their study showed that the impact of refactoring on these measures ranged
from negative to positive. In a subsequent study, Bios et al. [19] differentiated
between the application of Refactor to Understand and the traditional Read to
Understand pattern, demonstrating that refactoring plays a role in improving
software understandability. Rieger et al. [83] provided insight into system-wide
code duplication. The author proposed a way of grouping the duplication in-
formation into useful abstractions and proposed a number of polymetric views
that structure the data and combine it with the knowledge about the system
that the engineer possesses.

Geppert et al. [20] investigated the impact of refactoring on changeability
by focusing on three factors: customer-reported defect rates, change effort, and
scope of changes. Their findings showed a significant decrease in the first two
factors. Ratzinger et al. [21] analyzed historical data from a large industrial
system, focusing on reducing change couplings. By examining identified change
couplings and corresponding code smell changes, they determined efficient areas
for applying refactoring, concluding that refactoring has the potential to enhance
software evolvability, specifically by reducing change coupling. In an agile devel-
opment environment, Moser et al. [22] used internal measures (i.e., CK, MCC,
LOC) to explore the effect of refactoring on the reusability of the code using a
commercial system. Their study indicated that refactoring could enhance the
reusability of classes that initially were difficult to reuse. Wilking et al. [23]
empirically studied the effect of refactoring on non-functional aspects, i.e., the

7

maintainability and modifiability of system systems. They tested maintainabil-
ity by explicitly adding defects to the code and then measured the time taken to
remove them. However, modifiability was examined by adding new functional-
ity and then measuring the LOC metric and the time taken to implement these
features. The authors did not find a clear effect of refactoring on these two
external attributes.

Stroggylos and Spinellis [24] opted for searching words stemming from the
verb “refactor" such as “refactoring” or “refactored” to identify commits related
to refactoring to study the impact of refactoring on quality using eight object-
oriented metrics. Their results indicated possible negative effects of refactoring
on quality, e.g., increased LCOM metric. Moser et al. [25] investigated the im-
pact of refactoring on productivity within an agile team. Their results indicated
that refactoring not only enhanced software developers’ productivity but also
positively affected various quality aspects, such as maintainability. Alshayeb
[29] conducted a study aiming to assess the impact of eight refactorings on
five external quality attributes (i.e., adaptability, maintainability, understand-
ability, reusability, and testability). The author found that refactoring could
improve the quality in some classes, but could also decrease software quality to
some extent in other classes. Hegedus et al. [32] examined the effect of singular
refactoring techniques on testability, error proneness, and other maintainability
attributes. They concluded that refactoring could have undesirable side effects
that can degrade the quality of the source code.

Shatnawi and Li [33] used the hierarchical quality model to assess the impact
of refactoring on four quality factors in software, namely reusability, flexibility,
extendibility, and effectiveness. The authors found that most of the refact-
oring operations have a positive impact on quality; however, some operations
deteriorated quality. Bavota et al. empirically investigated the developers’
perception of coupling, as captured by structural, dynamic, semantic, and lo-
gical coupling measures. They found that the semantic coupling measure aligns
with developers’ perceptions better than the other. Bavota et al. [49] used
RefFinder2, a version-based refactoring detection tool, to mine the evolution
history of three open-source systems. They mainly investigated the relationship
between refactoring and quality. The findings of the study indicate that 42%
of the refactorings performed are affected by code smells, and the refactorings
were able to eliminate code smells only in 7% of the cases.

Cedrim et al. [52] conducted a longitudinal study involving 25 projects to
explore the improvement of the structural quality of software. They examined
the relationship between refactorings and code smells, categorizing refactorings
based on whether they added or removed problematic code structures. The
study results indicate that only 2.24% of the refactorings removed the code
smells, while 2.66% introduced new ones. Chavez et al. [56] investigated the
impact of refactoring on five internal quality attributes—cohesion, coupling,
complexity, inheritance, and size—using 25 quality metrics. Their study indic-

2https://github.com/SEAL-UCLA/Ref-Finder

8

ated that root-canal refactoring-related operations either improved or at least
did not worsen internal quality attributes. Furthermore, when floss refactoring-
related operations are applied, 55% of these operations improved these attrib-
utes, while only 10% quality decreased. Pantiuchina et al. [84] investigated the
motivation behind refactoring by computing 42 product and process metrics for
each of the 213,102 commits in the studied projects.

Two studies, particularly relevant to our work, have delved into comment
commits in which developers explicitly aimed to improve software quality [47, 7].
Szoke et al. [47] studied 198 refactoring commits of five large-scale industrial
systems to investigate the effects of these commits on the quality of several
revisions over a period of time. To understand the purpose of the applied re-
factorings, developers were trained and asked to articulate the reason when
committing changes to repositories, relating to (1) fixing coding issues, (2) ad-
dressing anti-patterns, and (3) improving specific metrics. The results of the
study showed that performing a single refactoring could negatively impact the
quality, but applying refactorings in blocks (e.g., fixing more coding issues or
improving more quality metrics) can significantly improve software quality. In
a related study, Pantiuchina et al. [7] empirically investigated the correlation
between seven code metrics and the quality improvement explicitly reported
by developers in 1,282 commit messages. The study showed that quality met-
rics sometimes do not capture the quality improvement reported by developers.
Both studies used quality metrics as a common indicator to assess quality im-
provements, concluding that minor refactoring changes rarely had a substantial
impact on software quality.

All of the aforementioned studies have focused on evaluating the impact of
refactorings on quality by examining either internal or external quality attrib-
utes through various methodologies. Among them, few studies [21, 24, 47, 49,
52, 56, 7, 76, 79, 70, 77, 64, 8] mined software repositories to explore the impact
on quality. Otherwise, the vast majority of these studies used a limited set of
projects and mined general commits without applying any form of verification
regarding whether refactorings have actually been applied.

Our work differs from these studies shown in Tables 1 and 2, as our main
purpose is to explore whether there is an alignment between quality metrics
and the removal of code duplication that developers document in the commit
messages. As we summarize these state-of-the-art studies, we identify 5 popular
quality attributes, namely Cohesion, Coupling, Complexity, Inheritance, and
Design size. Given the varied metrics advocated by different studies to calculate
these quality attributes, we extracted and calculated 32 structural metrics. In
a more qualitative sense, we conducted an empirical study using 322 distinct
commits that are proven to contain real-world instances of refactoring activities,
with the purpose of removing code duplication. To the best of our knowledge,
no previous study has empirically investigated, using a curated set of commits,
the representativeness of structural design metrics for code duplication. The
next section details the steps we took to design our empirical setup.

9

 Phase 1: Extracted Dataset

Commit log,
extracted

refactoringsSource dataset Extract data Extracted dataset

 Phase 2: Quality Attributes & Software Metrics Selection

Extract commits
(2,169,916)

Select quality attributes
(5)

Use keyword approach
(322)

Measure quality attributes
(32)

Quantitative analysis

 Phase 3: Data Analysis

Qualitative analysisSelect commit messages

Analyze code changes Analyze refactorings

mongoDB SQLite

Figure 1: Overview of the empirical study design, highlighting the 3 main phases: Dataset Extrac-
tion, Selection of Quality Attributes and Software Metrics, and Data Analysis.

3. Study Design

Our primary objective is to explore the alignment between developers’ per-
ceptions of code duplicate removal (as anticipated by developers) and the actual
improvement in software quality (as evaluated by quality metrics). Specifically,
our aim is to address the following research questions.

RQ1: What is the quantitative code quality assessment of code duplica-
tions that have been intentionally removed by developers?
RQ2: What are the refactoring operations associated with code duplicate
removal?

To address our research questions, we conducted a three-phase empirical
study. An overview of the experiment methodology is depicted in Figure 1.
The initial phase involves extracting a substantial number of open-source Java
projects along with their instances of refactoring throughout their development
history, specifically focusing on commit-level code changes for each project un-
der consideration. In the second phase, we select software quality metrics to
compare their values before and after the identified refactoring commits. Sub-
sequently, the third phase involves analyzing commit messages to identify re-
factoring commits where developers document their perception of code duplicate
removal. In the next subsection, we discuss each phase in detail.

10

3.1. Extracted Dataset
Our study uses the SmartSHARK MongoDB Release 2.2 dataset [9]. This

dataset contains a wide range of information for 128 open-source Java projects,
such as commit history, issues, refactorings, code metrics, mailing lists, and con-
tinuous integration data. All Java projects are part of the Apache ecosystem
and utilize GitHub as their version control repository and JIRA for issue track-
ing. SmartSHARK utilizes RefDiff [85] and RefactoringMiner [86] to mine
refactoring operations. This study is motivated to investigate code duplication-
aware refactoring practices in Apache projects. A recent study [87] highlights
the Apache Software Foundation as a prominent example of successful open-
source software communities [88, 89, 90]. Both practitioners and researchers
have been extracting valuable insights and gaining experience from Apache’s
effective practices to drive the open-source movement forward [91, 92, 93]. Fur-
thermore, Apache is a collaborative environment where engineers from major
corporations such as IBM, Google, Yahoo, Sun, and Oracle volunteer to develop
open-source software infrastructure [94].

To extract the relevant information, we built custom scripts to extract data
pertinent to our study (i.e., commits, metrics, refactorings) from the source
dataset into an SQLite database for analysis. First, we extract all commits with
the keyword ‘duplicat*’ and ‘code clone’, discussed later in Section 3.3. Next, we
extract all refactoring operations. However, due to the use of two refactoring
mining tools, there are duplicate operations in the source data. Hence, our
next step is to remove all duplicates by comparing the refactoring descriptions.
After that, we select all commits associated with a refactoring operation. Using
both refactoring mining tools allowed us to mitigate the limitations of relying
on a single tool and ensured a more diverse and thorough dataset. Table 3
summarizes the extracted data.

3.2. Quality Attributes & Quality Metrics Selection
To setup a comprehensive set of quality attributes for evaluation in our study,

we initially analyze existing studies to identify commonly recognized software
quality attributes [95, 96, 97, 98, 99, 100]. Next, we assess whether the metrics
evaluate various object-oriented design aspects, mapping each internal quality
attribute to the corresponding structural metric(s). Additionally, we extract as-
sociations between metrics (such as the CK suite [95], McCabe [97], and Lorenz
and Kidd’s book [96]) and internal quality attributes from the literature review.
Tables 1 and 2 summarize the extracted metrics.

Subsequently, we examined the extracted metrics to determine whether these
metrics exist in the SmartSHARK dataset, calculated using OpenStaticAna-
lyzer3. The extraction process results in 32 distinct structural metrics as shown
in Table 4. The list of metrics is (1) well-known and defined in the literature,
and (2) can assess different code-level elements, i.e., method, class, package.

3https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer

11

3.3. Data Analysis

Table 3: Summary of the extracted data.

Item Count

Total projects 128
Refactoring commits with keyword ‘duplicat* ’ 2,169,916
False positive commits 22
Refactoring commits after removing false positives 2,164,797
(Distinct) Refactoring commits with keyword ‘duplicat* ’ 332

After extracting all refactoring commits, we want to keep only commits
where refactoring is documented. We continue to filter them, using the content
of their messages at this stage. We use a keyword-based search to find commits
whose messages contain the keywords (i.e., ‘duplicat*’ or ‘code clone*’). We
selected these keywords because these keywords are naturally used by developers
to articulate their intent regarding code duplication [101, 102]. However, it is
worth mentioning that we did not find any commits with the keyword ‘code
clone’. Therefore, all the commits in our dataset solely include the keyword
‘duplicat’.

This keyword-based filtering selected 2,169,916 commit messages. To ensure
that these commits reported developers’ intention to remove code duplication,
we manually inspected and read through 322 distinct refactoring commits to
remove false positives. An example of a discarded commit is: “DeferredDu-
plicates.java”. We discarded this commit because the keyword ‘duplicat’ is
actually part of the identifier name of the class. In the case of doubts about
including a certain commit, it was excluded. This step resulted in considering
322 commits. Our goal is to have a gold set of commits in which the developers
explicitly reported the removal of duplicate code. This gold set will serve to
check later if there is an alignment between the real quality metrics affected in
the source code, and the code duplicate removal as documented by developers.
An example of commit messages belonging to the gold set, is showcased in the
following commit message “Refactored JavaClass and FieldOrMethod to avoid a
code duplication”.

We perform a qualitative analysis of intriguing instances of alignment or
disparity between the removal of code duplication as perceived by developers and
its evaluation through quality metrics. To do this, the author manually inspects
the commits, which involves analyzing the diff code alongside the metrics profile
of the affected code elements before and after the commit.

The resulting commits correspond to our data points, each data point is
represented by a set of pre-refactoring and post-refactoring Java files. These
data points will be used in the experiments, to measure the effect of changes in

12

Table 4: Structural code quality metrics used in this study.

Quality Attribute Study Metric Description

Cohesion [7, 56] ↓ LCOM Lack of Cohesion of Methods
Coupling [56, 7] ↓ CBO Coupling Between Objects

[7] ↓ RFC Response For Class
[103] ↓ NII Number of Incoming Invocations
[103] ↓ NOI Number of Outgoing Invocations

Complexity [56] ↓ CC Cyclomatic Complexity
[56, 7, 104] ↓ WMC Weighted Method Count
[103] ↓ NL Nesting Level
[103] ↓ NLE Nesting Level Else-if
[103] ↓ HCPL Hal. Calculated Program Length
[103] ↓ HDIF Hal. Difficulty
[103] ↓ HEFF Hal. Effort
[103] ↓ HNDB Hal. Number of Delivered Bugs
[103] ↓ HPL Hal. Program Length
[103] ↓ HPV Hal. Program Vocabulary
[103] ↓ HTRP Hal. Time Required to Program
[103] ↓ HVOL Hal. Volume
[103] ↑ MIMS Maintainability Index (MS)
[103] ↑ MI Maintainability Index (OV)
[103] ↑ MISEI Maintainability Index (SEIV)
[103] ↑ MISM Maintainability Index (SV)

Inheritance [56, 104] ↓ DIT Depth of Inheritance Tree
[56, 104] ↓ NOC Number of Children
[49] ↓ NOA Number of Operations Added by Subclass

Design Size [56] ↓ LOC Lines of Code
[103] ↓ TLOC Total Lines of Code
[56] ↓ LLOC Logical Lines of Code
[103] ↓ TLLOC Total Logical Lines of Code
[56] ↑ CLOC Lines with Comments
[24] ↓ NPM Number of Public Methods
[103] ↓ NOS Number of Statements
[103] ↓ TNOS Total Number of Statements

↑ by a metric indicates the higher the better for that metric; ↓ by a metric indicates the lower the better for that metric.

13

terms of structural metrics, with respect to the quality attribute, announced in
the commit message.

4. Results & Discussion

4.1. What is the quantitative code quality assessment of code duplications that
have been intentionally removed by developers?

For each refactoring commit in which developers document the removal of
duplicate code, we extract its associated metric values (see Table 4) before and
after the commit. In other words, for commit messages related to the removal
of code duplicates, we examine 32 corresponding metric values before and after
the selected refactoring commit. As we evaluate metric values both pre- and
post-refactoring, we want to distinguish, for each metric, whether there is a
variation between its pair of values, whether this variation signifies an improve-
ment, and whether the variation is statistically significant. Therefore, we use
the Wilcoxon test [105], a non-parametric test, to compare the group of metric
values before and after the commit since these groups depend on each other. The
null hypothesis is defined by no variation in the metric values of pre- and post-
refactored code elements. Thus, the alternative hypothesis indicates a variation
in the metric values. In each case, a decrease in the metric value is considered
desirable (i.e., an improvement), except for complexity metrics related to the
maintainability index and CLOC (see Table 4), where higher values are desir-
able. Furthermore, the variation between the values of both sets is considered
significant if its associated p-value is less than 0.05. Furthermore, we used the
Cliff’s delta (δ) effect size to estimate the magnitude of the differences. Re-
garding its interpretation, we follow the guidelines reported by Grissom et al.
[106]:

• Negligible for | δ |< 0.147

• Small for 0.147 ≤| δ |< 0.33

• Medium for 0.33 ≤| δ |< 0.474

• Large for | δ |≥ 0.474

To answer our main research question, we provide a detailed analysis of each
of the five quality attributes reported in Table 4 and qualitatively analyze the
cases with positive and negative impacts. Table 5 shows the overall impact of
refactorings on quality. The boxplots in Figures 3, 4, 5, 6, and 7 show the
distribution of each metric before and after each of the examined commits.
Cohesion. For commits wherein the messages indicate the removal of code
duplication, the boxplot depicted in Figure 2 illustrates the pre- and post-
refactoring results of the normalized LCOM. This metric, commonly used in
the literature to assess cohesion, is crucial in estimating the strength of cohe-
sion within classes. A lower LCOM metric value generally suggests that classes
should be split into one or more classes with better cohesion. Therefore, a low

14

Table 5: Effect of duplicate code removal on structural metrics. (+ve) indicates positive impact;
(-ve) indicates negative impact; (-) indicates metric remains unaffected, bold indicates statistical
significance; italic indicates improvement.

Quality Attribute Metric Impact p-value Cliff’s delta (δ)

Cohesion LCOM5 +ve 7.72e-41 0.54 (Large)
Coupling CBO +ve 9.49e-76 0.6 (Large)

RFC +ve 1.25e-68 0.55 (Large)
NII -ve 0 0.47 (Large)
NOI +ve 0 0.26 (Small)

Complexity CC - 0 0.14 (Small)
WMC +ve 6.51e-70 0.5 (Large)
NL - 3.92e-05 0.03 (Negligible)
NLE - 0.004 0.02 (Negligible)
HCPL +ve 0 0.14 (Negligible)
HDIF +ve 0 0.08 (Negligible)
HEFF +ve 2.45e-271 0.13 (Negligible)
HNDB +ve 1.07e-266 0.13 (Negligible)
HPL +ve 0 0.13 (Negligible)
HPV +ve 0 0.14 (Negligible)
HTRP +ve 2.48e-271 0.13 (Negligible)
HVOL +ve 0 0.13 (Negligible)
MIMS +ve 7.23e-227 0.13 (Negligible)
MI +ve 7.22e-227 0.13 (Negligible)
MISEI +ve 0 0.16 (Small)
MISM +ve 0 0.16 (Small)

Inheritance DIT -ve 3.81e-199 0.6 (Large)
NOC +ve 3.61e-130 0.83 (Large)
NOA -ve 2.37e-196 0.63 (Large)

Design Size LOC +ve 0 0.14 (Small)
TLOC +ve 0 0.16 (Small)
LLOC +ve 0 0.13 (Negligible)
TLLOC +ve 0 0.15 (Small)
CLOC - 1.43e-05 0.02 (Negligible)
NPM - 4.42e-193 0.5 (Large)
NOS +ve 0 0.07 (Negligible)
TNOS +ve 0 0.08 (Negligible)

15

Figure 2: Cohesion - LCOM5

Figure 3: Boxplots of cohesion metric values of pre- and post-refactored files.

value for this metric signifies strong class cohesiveness. We specifically chose
the normalized LCOM metric as it has been widely recognized in the literature
[7, 56, 107] as being the alternative to the original LCOM, by addressing its
main limitations (artificial outliers, misperception of getters and setters, etc.).
As can be seen from the boxplot in Figure 2, the median drops from 1 to 0. This
result indicates that LCOM is improved after code duplicate removal. Further-
more, as shown in Table 5, LCOM has a positive impact on cohesion quality,
as it decreases in the refactored code. This implies that developers did improve
the cohesion of their classes. Table 5 shows that the differences in LCOM are
statistically significant and the magnitude of the differences is large.
Example (Positive Impact): To illustrate an improvement in cohesion when
the removal of duplicate code was found in the Maven project4, developers
applied ‘Move Class’ refactoring to move JUnit4TestCheckerTest.MySuite2
to JUnit3TestCheckerTest.MySuite2. This results in its LCOM5 dropping
from 2 to 1. The improvement in the LCOM5 metric after the removal of code
duplication could be attributed to the simplification of method interactions, the
modularization of logic, the enhancement of code clarity, and the abstraction of
common functionality.
Example (Negative Impact): To illustrate a decrease in cohesion when the
removal of duplicated code was found in the Maven project5, developers ap-
plied ‘Move Class’ refactoring to move JUnit4TestCheckerTest.NestedTC to
JUnit3TestChecker
Test.NestedTC. This results in its LCOM5 increasing from 0 to 2. The LCOM5
metric might not have improved after removing duplicated code, as removal of
duplicated code might not have substantially altered the underlying design and
interactions of methods.
Coupling. For commits with messages indicating the removal of code duplic-
ation, the boxplots presented in Figures 4a, 4b, 4c, and 4d show the pre- and
post-refactoring results of four structural metrics, i.e., CBO, RFC, NII, and
NOI, used in the literature to estimate the coupling. The figures reveal that
three of the coupling metrics exhibited an improvement in median values. For
instance, CBO, RFC, and NOI medians decreased, respectively, from 6 to 3,

4https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
5https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2

16

https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2

from 5 to 1, and from 6 to 3, respectively. CBO counts the number of classes
coupled to a particular class through method or attribute calls. Calls are coun-
ted in both directions. CBO values have significantly decreased, making it a
good coupling representative. The RFC, which measures the visibility of a class
to outsider classes, has been reduced as developers intend to optimize coup-
ling. According to our results, the variations are statistically significant and the
magnitude of the differences is large for both metrics. NOI, which represents
the number of outgoing invocations, has also decreased, and Cliff’s delta value
indicates a small effect size. However, NII exhibits the opposite variation, and
the effect size is large.

The manual inspection of the refactored code indicates that developers typ-
ically decrease coupling by reducing (1) the strength of dependencies that exist
between classes, (2) the message flow of the classes, and (3) the number of in-
puts a method uses plus the number of subprograms that call this method. The
code was improved as expected from the developer’s intentions in their commit
message.
Example (Positive Impact): One of the examples showing an improve-
ment in coupling was found in the Maven project6. Developers applied ‘Move
Class’ refactoring to move JUnit4TestCheckerTest.MySuite2 to JUnit3Test
CheckerTest.MySuite2. This results in its CBO dropping from 1 to 0, and
its RFC from 2 to 1. The improvement in the CBO and RFC metrics after
the removal of code duplication can be related to the elimination of external
dependencies and the simplification of method interactions. However, its NII
and NOI remain unchanged.
Example (Negative Impact): One of the examples showing an increase in
coupling was found in the Archiva project7. The developer applied ‘Extract Su-
perclass’ refactoring to extract AbstractDiscoverer from AbstractArtifact
Discoverer. This results in its CBO increasing from 0 to 1, its RFC from 4
to 6, and its NOI from 0 to 2. However, its NII improves from 3 to 0. The
lack of improvement in CBO, RFC, and NOI metrics after the removal of code
duplication could be attributed to the specific nature of the duplication and its
limited impact on class interactions, method hierarchies, and message handling.
Complexity. Regarding complexity metrics, we consider 16 literature metrics,
shown in Table 4, to investigate the removal of duplicate code as perceived by
developers. As seen in the boxplots in Figures 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h,
5i, 5j, 5k, 5l, 5m, 5n, 5o, and 5p, we observe that CC, NL, and NLE remain
unchanged, whereas the other 13 metrics experienced an improvement in the
median values. The refactored duplicate code exhibits higher values for the four
maintenance index-related complexity (i.e., MIMS, MI, MISEI, and MISM).
The higher values are desirable for these metrics, as shown in Table 4. Addi-
tionally, the duplicate code refactored shows lower values for the other metrics
(i.e., WMC, HCPL, HDIF, HEEF, HNDB, HPL, HPV, HTRP, and HVOL),

6https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
7https://github.com/apache/archiva/commit/26e9c3b257bed850d0e2f0bc9dc2d7f11381b789

17

https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
https://github.com/apache/archiva/commit/26e9c3b257bed850d0e2f0bc9dc2d7f11381b789

(a) Coupling - CBO (b) Coupling - RFC (c) Coupling - NII (d) Coupling - NOI

Figure 4: Boxplots of coupling metric values of pre- and post-refactored files.

where lower values are desirable after the application of refactoring.
In particular, through a manual inspection of the collected dataset, we ob-

serve that developers tend to reduce the number of local methods, simplify
the structure statements, reduce the number of paths in the body of the code,
and lower the nesting level of the control statements (e.g., selection and loop
statements) in the method body.

As seen in Table 5, the p-values obtained from all complexity metrics are
statistically significant. The effect sizes calculated in Cliff ’s delta (δ) are found
to be large only for WMC, small for CC, MISEI, and MISM, and negligible for
the remaining 12 metrics.
Example (Positive Impact): As an illustrative example, we refer to com-
mit8 which implements ‘Move Class’ refactoring to move JUnit4TestChecker
Test.MySuite2 to JUnit3TestCheckerTest.MySuite2. Its CC, NL, and NLE
remain unaffected, and its WMC improves from 2 to 1. The unchanged CC
could be due to the specific nature of the duplicated code, which might not
have affected the control flow patterns significantly. However, the improved
WMC could be due to consolidation, optimization, or simplification of methods
due to the removal of duplicates. In another example9, ‘Extract Method’ refact-
oring has been applied by developers to extract resume from addStreamTasks
to eliminate duplication. Its four maintainability index metrics, i.e., MIMS, MI,
MISEI, and MISM improved (44.59 to 75.78, 76.25 to 129.6, 56.64 to 153.82, and
33.12 to 89.95), respectively. The remaining complexity metrics, i.e., HCPL,
HDIF, HNDB, HPL, HPV, HTRP, HVOL, have also improved (343.36 to 23.50,
52.85 to 3, 1515.44 to 44, 184 to 11, 67 to 10, 3277.43 to 6.09, and 1116.16 to
36.54, respectively).
Example (Negative Impact): As an illustrative example, we refer to com-
mit10 which implements ‘Extract Superclass’ refactoring to extract Element
from Copyright and Person. Its CC increases from 0 to 0.11, its WMC in-
creases from 3 to 45, its NL and NLE increase from 0 to 2. When referring
to commit11, the ‘Extract Method’ refactoring to extract getReportFile from
getRealDependencyRevisionIds to remove duplication. Its four maintainab-

8https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
9https://github.com/apache/kafka/commit/f7b7b4745541a576eb0219468263487b07bac959

10https://github.com/apache/sis/commit/c8ffc0116b86f39caa3d2f45dca5dec68049c93e
11https://github.com/apache/ant-ivy/commit/b74264847ef8e9ffeaf06d5fa1fdead4a065b480

18

https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
https://github.com/apache/kafka/commit/f7b7b4745541a576eb0219468263487b07bac959
https://github.com/apache/sis/commit/c8ffc0116b86f39caa3d2f45dca5dec68049c93e
https://github.com/apache/ant-ivy/commit/b74264847ef8e9ffeaf06d5fa1fdead4a065b480

(a) Complexity - CC (b) Complexity - WMC (c) Complexity - NL (d) Coupling - NLE

(e) Complexity - HCPL (f) Complexity - HDIF (g) Complexity - HEFF (h) Complexity - HNDB

(i) Complexity - HPL (j) Complexity - HPV (k) Complexity - HTRP (l) Complexity - HVOL

(m) Complexity - MIMS (n) Complexity - MI (o) Complexity - MISEI (p) Complexity - MISM

Figure 5: Boxplots of complexity metric values of pre- and post-refactored files.

ility index metrics have not improved (75.71 to 64.27, 129.47 to 109.90, 155.64
to 83.06, 91,02, for MIMS, MI, MISEI, and MISM, respectively). The remain-
ing complexity metrics, i.e., HCPL, HDIF, HNDB, HPL, HPV, HTRP, HVOL,
have also not improved (61.30 to 120.76, 12.25 to 21, 108.09 to 317.87, 22 to
55, 18 to 30, 62.43 to 314.85, and 91.73 to 269.87, respectively). The absence of
improvement in complexity metrics could be due to factors such as the nature of
duplicated code, the distribution of complexity across the codebase, and the po-
tential compensatory complexity introduced during the code duplicate removal
process.
Inheritance. For commits that involve the removal of code duplication, the
boxplots depicted in Figures 6a, 6b and 6c showcase the pre- and post-refactoring
results of three structural metrics: i.e., DIT, NOC, and NOA, used in the lit-
erature to estimate the inheritance. We observe that only one metric among
the three experienced a degradation in median values. Specifically, the median

19

(a) Inheritance - DIT (b) Inheritance - NOC (c) Inheritance - NOA

Figure 6: Boxplots of inheritance metric values of pre- and post-refactored files.

for NOC decreased from 3 to 0, while the median for DIT and NOA increased
from 2 to 3 and from 3 to 4, respectively. This suggests that developers may
be increasing the depth of the hierarchy by adding more methods for a class
to inherit, reducing the number of immediate subclasses, and increasing the
number of methods added by a subclass. While some instances show improve-
ment in inheritance, the overall depth of the inheritance tree and the number of
methods added by a subclass did not decrease. The interpretation of the met-
ric improvement depends highly on the quality of the code and the developer’s
design decisions. The statistical test shows that the differences are statistically
significant for DIT, NOC, and NOA. The magnitude of the difference between
the three metrics is large.
Example (Positive Impact): One of the examples that demonstrated im-
provement in inheritance was found in a particular commit in the Maven pro-
ject12. The developer applied ‘Move Class’ refactoring to move JUnit4TestChecker
Test.CustomSuiteOnlyTest to JUnit3TestCheckerTest.CustomSuiteOnlyTest.
Its DIT drops from 1 to 0, its NOC remains unaffected, and its NOA improves
from 1 to 0. This increases the reuse of common code logic and leads to more
effective inheritance relationships and a better-defined hierarchy.
Example (Negative Impact): One of the examples that showed improvement
in inheritance was found in a particular commit in the Archiva project13. The
developer applied ‘Extract Superclass’ refactoring to extract AbstractDiscoverer
from class AbstractArtifactDiscoverer. Its DIT increases from 0 to 1, its
NOC remains unaffected, and its NOA increases from 0 to 1. This indicates that
the refactoring applied to remove duplication does not always improve inher-
itance metrics due to either pre-existing inheritance challenges, or the focused
nature of the duplication removal.
Design Size. For commits whose messages report the removal of code du-
plicate, the boxplots sketched in Figures 7a, 7b, 7c, 7d, 7e, 7f, 7g, and 7h
show the pre- and post-refactoring results of four structural metrics, i.e., LOC,
TLOC, LLOC, TLLOC, CLOC, NPM, NOS, and TNOS, used in the literature
to estimate the design size. We notice the improvement of six metrics, namely
LOC, TLOC, LLOC, TLLOC, NOS, and TNOS after the commits in which de-

12https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
13https://github.com/apache/archiva/commit/26e9c3b257bed850d0e2f0bc9dc2d7f11381b789

20

https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
https://github.com/apache/archiva/commit/26e9c3b257bed850d0e2f0bc9dc2d7f11381b789

velopers explicitly target the improvement of code duplication, their variations
are statistically significant. The magnitude of LOC, TLOC, and TLLOC is
small, whereas the magnitude for LLOC, NOS, and TNOS is negligible. As
seen in the box plots, the medians generally decreased. However, we note that
the medians for CLOC and NPM remain unchanged. The differences in CLOC
and NPM are statistically significant, and the magnitude of the difference is
negligible and large, respectively. This indicates that developers generally re-
tain the lines containing comments and maintain the same number of methods
after applying refactoring.
Example (Positive Impact): As an illustrative example, we refer to the
commit14 which implements ‘Extract Method’ refactoring to extract accept
(testClass) from invalidTest. Its LOC, TLOC, LLOC, TLLOC drop from
6 to 4, and its CLOC, NOS, and TNOS remain unaffected. Furthermore, when
moving the class JUnit4TestCheckerTest.AlsoValid to JUnit3TestChecker
Test.AlsoValid, its NPM improves from 1 to 0. In qualitative terms, the
removal of code duplication and the introduction of a dedicated method have
led to more modular, focused, and readable code. This shows that size metrics
capture the removal of code duplication as perceived by the developer.
Example (Negative Impact): As an illustrative example, we refer to the
commit15 which implements ‘Extract Method’ refactoring to extract accept
(createAnnotationEntries) from getAnnotationEntries. Its LOC and TLOC
increased from 7 to 11, its LLOC, TLLOC increased from 6 to 10, and its NOS
and TNOS increased from 3 to 6. Its CLOC decreases from 3 to 1. The observed
lack of improvement, in this case, can be attributed to a couple of factors, in-
cluding the nature of the changes made, the extent of duplication and additional
compensatory changes. This results in an overall increase in the class size as
assessed by these employed design size metrics.
Summary. This section summarizes our findings and their implications.

• Cohesion. The normalized LCOM metric not only serves as a suitable
substitute for the original LCOM but also serves as a representation of
the cohesion quality attribute. A positive variation in this metric aligns
with the developer’s intention to eliminate code duplication.

• Coupling. CBO, RFC, and NOI generally improve as the developer in-
tends to eliminate code duplication, and their variation is significant. NII
exhibits opposite variations in coupling.

• Complexity. CC, NL, and NLE remain unchanged, and the remaining
13 complexity-related metrics generally improve as the developer intends
to improve code duplicate, and all their variation is significant.

• Inheritance. NOC generally decreases as the developer intends to remove
code duplication, and its variation is significant. DIT and NOA exhibit

14https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
15https://github.com/apache/commons-bcel/commit/67dfdf60f5f8ccb8ed910bfe9d1cdc6e84f0db36

21

https://github.com/apache/maven-surefire/commit/d5de47a4f790ea2d18edb5e05c1ef2adcd2db8a2
https://github.com/apache/commons-bcel/commit/67dfdf60f5f8ccb8ed910bfe9d1cdc6e84f0db36

(a) Design Size - LOC (b) Design Size - TLOC (c) Design Size - LLOC (d) Design Size - TLLOC

(e) Design Size - CLOC (f) Design Size - NPM (g) Design Size - NOS (h) Design Size - TNOS

Figure 7: Boxplots of design size metric values of pre- and post-refactored files.

Extract Method
55.7%

Move Method
37.5%Extract Superclass 3.8%

Move Attribute 2.7%
Move Class 0.3%

Figure 8: Distribution of refactoring operations for code duplicate removal.

opposite variations in inheritance.

• Design Size. LOC, TLOC, LLOC, TLLOC, NOS, TNOS generally im-
prove as developers intend to remove code duplication, and their variations
are significant. These metrics have a significant positive variation which
matches the developer’s perception of removing code duplicates.

4.2. What are the refactoring operations that are associated with code duplicate
removal?

Looking at the refactoring operations that could play a role in code duplic-
ate removal, Figure 8 depicts the percentages of refactoring operations. As can
be seen, the most common category concerns ‘Extract Method’, representing
55.7% of the commits. This observation is in line with the findings of previous
studies describing that ‘Extract Method’ refactoring is considered “Swiss army

22

knife” of refactorings as developers often apply it to eliminate duplicated code
[108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118]. In fact, a recent study
on extract method refactoring highlights that method extraction is one of the
main refactorings that were defined when the area was established [118, 119], as
it is a common response to the need to keep methods concise and modular, and
reduced the spread of shared responsibilities. The next most common categor-
ies are ‘Move Method’, representing 37.5% of the commits. This indicates that
developers might improve the quality of the code by moving the method contain-
ing duplication to a different class, effectively eliminating duplicated code. The
category ‘Extract Superclass’, ‘Move Attribute’, and ‘Move Class’ had the least
number of commits, which had a ratio of 3.8%, 2.7%, and 0.3%, respectively.

When performing manual inspection of source code, we notice that these
five refactoring operations contribute to the elimination of code duplication in
several ways. By performing the ‘Extract Method’ refactoring, redundant code
segments can be consolidated into a single method that can be reused across dif-
ferent parts of the codebase. Additionally, when moving methods from one class
to another using ‘Move Method’ refactoring, it helps centralize logic and elimin-
ate duplicate code that might have been present in multiple classes. Moreover,
by extracting a superclass using ‘Extract Superclass’ refactoring, it encapsu-
lates common attributes and behaviors of related classes, allowing duplicated
code to be consolidated. This can be followed by moving shared attributes to
a common superclass using ‘Move Attribute’ refactoring to reduce redundancy
and ensures that changes to these attributes are reflected across all subclasses.
Finally, moving the entire class to a common location using ‘Move Class’ refact-
oring can help in reducing duplicated code, and it is useful when classes share
similar functionality but exist in different parts of the codebase.

5. Lessons Learned

Lesson 1: Code clones associated with commits about duplicate re-
moval are from different clone types. There are various types of code clone
exist in the literature (i.e., Type-1, Type-2, Type-3, and Type-4) [120]. When
performing manual examination of commits associated with code clones, we real-
ized that some commits with the explicit intention of removing duplication are
associated with different clone types. Furthermore, in some commits associated
with duplicate removal, developers can combine clone refactoring with other
unrelated changes, such as feature updates, bug fixes, or general code cleanup.
This observation is consistent with existing studies that show that developers
interleave refactoring with other changes, and 11– 39% of bug fixing commits
include other changes [5, 102, 121, 122].
Lesson 2: Refactoring different types of clones can have different

variations on metric values. As illustrated in Tables 1 and 2, there have
been two decades’ worth of work on the relationship between refactoring and
code quality. We can see that there is room for empirical investigation of the
impact of clone removal refactorings on internal quality metrics. In this study,
we observe that the impact of refactoring clones on software quality metrics can

23

Commit message indicating the removal of code duplication (Type 1 clone)

Code snippet depicting the instances of code duplication before refactoring

Metric values before clone refactoring

Number of Incoming Invocations (NII): 11.3
Number of Outgoing Invocations (NOI): 1.3
Cyclomatic Complexity (CC): 0
Nesting Level (NL): 0.6
Nesting Level Else-if (NLE): 0.6
Hal. Calculated Program Length (HCPL): 84.2
Hal. Difficulty (HDIF): 14.0
Hal. Effort (HEFF): 7775.4
Hal. Number of Delivered Bugs (HNDB): 288.6
Hal. Program Length (HPL): 48.6
Hal. Program Vocabulary (HPV): 22.0
Hal. Time Required to Program (HTRP): 431.96
Hal. Volume (HVOL): 247.9
Maintainability Index (MIMS): 69.8
Maintainability Index (MI): 119.4
Maintainability Index (MISEI): 105.01
Maintainability Index (MISM): 61.4
Lines of Code (LOC): 9.6
Total Lines of Code (TLOC): 9.6
Logical Lines of Code (LLOC): 7.3
Total Logical Lines of Code (TLLOC): 7.3
Lines with Comments (CLOC): 0.6
Number of Statements (NOS): 4.3
Total Number of Statements (TNOS): 4.3

Code snippet depicting the removal of the duplicated code through the `Extract Method' refactoring

Metric values after clone refactoring

Number of Incoming Invocations (NII): 1.6
Number of Outgoing Invocations (NOI): 2.3
Cyclomatic Complexity (CC): 0
Nesting Level (NL): 0.3
Nesting Level Else-if (NLE): 0.3
Hal. Calculated Program Length (HCPL): 96.3
Hal. Difficulty (HDIF): 19.3
Hal. Effort (HEFF): 6567.7
Hal. Number of Delivered Bugs (HNDB): 331.1
Hal. Program Length (HPL): 63.3
Hal. Program Vocabulary (HPV): 25.3
Hal. Time Required to Program (HTRP): 364.8
Hal. Volume (HVOL): 298.5
Maintainability Index (MIMS): 60.2
Maintainability Index (MI): 102.9
Maintainability Index (MISEI): 73
Maintainability Index (MISM): 42.7
Lines of Code (LOC): 12.3
Total Lines of Code (TLOC): 12.3
Logical Lines of Code (LLOC): 11
Total Logical Lines of Code (TLLOC): 11
Lines with Comments (CLOC): 0
Number of Statements (NOS): 5.6
Total Number of Statements (TNOS): 5.6

Figure 9: Example of selected Type-1 code clone from kafka project.

24

Commit message indicating the removal of code duplication (Type 2 clone)

Code snippet depicting the instances of code duplication before refactoring

Metric values before clone refactoring

Number of Incoming Invocations (NII): 1
Number of Outgoing Invocations (NOI): 10
Cyclomatic Complexity (CC): 0.41
Nesting Level (NL): 2
Nesting Level Else-if (NLE): 2
Hal. Calculated Program Length (HCPL): 255.53
Hal. Difficulty (HDIF): 40.94
Hal. Effort (HEFF): 35810.76
Hal. Number of Delivered Bugs (HNDB): 1060.44
Hal. Program Length (HPL): 145
Hal. Program Vocabulary (HPV): 53
Hal. Time Required to Program (HTRP): 1989.48
Hal. Volume (HVOL): 838.43
Maintainability Index (MIMS): 46.69
Maintainability Index (MI): 79.85
Maintainability Index (MISEI): 65.92
Maintainability Index (MISM): 38.55
Lines of Code (LOC): 42.6
Total Lines of Code (TLOC): 42.6
Logical Lines of Code (LLOC): 33.6
Total Logical Lines of Code (TLLOC): 33.6
Lines with Comments (CLOC): 5
Number of Statements (NOS): 16
Total Number of Statements (TNOS): 16

Code snippet depicting the removal of the duplicated code through the `Extract Method' refactoring

Metric values after clone refactoring

Number of Incoming Invocations (NII): 5
Number of Outgoing Invocations (NOI): 0
Cyclomatic Complexity (CC): 0
Nesting Level (NL): 1
Nesting Level Else-if (NLE): 1
Hal. Calculated Program Length (HCPL): 96.2
Hal. Difficulty (HDIF): 12.6
Hal. Effort (HEFF): 2235.24
Hal. Number of Delivered Bugs (HNDB): 140.95
Hal. Program Length (HPL): 38
Hal. Program Vocabulary (HPV): 25
Hal. Time Required to Program (HTRP): 124.18
Hal. Volume (HVOL): 176.46
Maintainability Index (MIMS): 64.16
Maintainability Index (MI): 109.72
Maintainability Index (MISEI): 107.58
Maintainability Index (MISM): 62.91
Lines of Code (LOC): 10
Total Lines of Code (TLOC): 10
Logical Lines of Code (LLOC): 8
Total Logical Lines of Code (TLLOC): 8
Lines with Comments (CLOC): 1
Number of Statements (NOS): 3
Total Number of Statements (TNOS): 3

Figure 10: Example of selected Type-2 code clone from cayenne project.

25

Commit message indicating the removal of code duplication (Type 3 clone)

Code snippet depicting the instances of code duplication before refactoring

Metric values before clone refactoring

Number of Incoming Invocations (NII): 0
Number of Outgoing Invocations (NOI): 5.17
Cyclomatic Complexity (CC): 0.61
Nesting Level (NL): 0.23
Nesting Level Else-if (NLE): 0.23
Hal. Calculated Program Length (HCPL): 231.46
Hal. Difficulty (HDIF): 15.35
Hal. Effort (HEFF): 9325.81
Hal. Number of Delivered Bugs (HNDB): 406.85
Hal. Program Length (HPL): 88.35
Hal. Program Vocabulary (HPV): 49.11
Hal. Time Required to Program (HTRP): 518.10
Hal. Volume (HVOL): 508.48
Maintainability Index (MIMS): 51.22
Maintainability Index (MI): 87.59
Maintainability Index (MISEI): 53.62
Maintainability Index (MISM): 31.35
Lines of Code (LOC): 28.88
Total Lines of Code (TLOC): 28.88
Logical Lines of Code (LLOC): 26.17
Total Logical Lines of Code (TLLOC): 26.17
Lines with Comments (CLOC): 0.17
Number of Statements (NOS): 9.17
Total Number of Statements (TNOS): 9.17

Code snippet depicting the removal of the duplicated code through the `Extract Method' refactoring

Metric values after clone refactoring

Number of Incoming Invocations (NII): 5.3
Number of Outgoing Invocations (NOI): 2.4
Cyclomatic Complexity (CC): 0
Nesting Level (NL): 0.23
Nesting Level Else-if (NLE): 0.23
Hal. Calculated Program Length (HCPL): 113.01
Hal. Difficulty (HDIF): 17.32
Hal. Effort (HEFF): 5272.95
Hal. Number of Delivered Bugs (HNDB): 286.85
Hal. Program Length (HPL): 54.17
Hal. Program Vocabulary (HPV): 28.17
Hal. Time Required to Program (HTRP): 292.94
Hal. Volume (HVOL): 267.36
Maintainability Index (MIMS): 65.10
Maintainability Index (MI): 111.32
Maintainability Index (MISEI): 85.03
Maintainability Index (MISM): 49.72
Lines of Code (LOC): 8.11
Total Lines of Code (TLOC): 8.11
Logical Lines of Code (LLOC): 7.64
Total Logical Lines of Code (TLLOC): 7.64
Lines with Comments (CLOC): 0
Number of Statements (NOS): 5.17
Total Number of Statements (TNOS): 5.17

Figure 11: Example of selected Type-3 code clone from pig project.

26

vary based on the type of clone being refactored. Moreover, developers may
have various mechanisms that contribute to removing duplicates, and these
strategies may dictate different variations on the metrics. However, locating
refactored clone types for each instance presents multiple challenges: (1) a single
commit can address multiple clone types simultaneously, making it difficult
to attribute metric variations to a specific clone type; (2) some clone types
may occur less frequently in the dataset, further complicating efforts to draw
conclusions regarding the influence of clone types on metric variations; and (3)
manually determining clone types for each instance is time-consuming and prone
to error, particularly when dealing with a large dataset. Although existing clone
detection tools can detect the clone, they require additional configuration and
setup by the users. In the following, we show an example of each type of clone
and its refactoring:

• Type-1 code clone. Figure 9 illustrates a Type-1 clone that has been
refactored. The example demonstrates two duplicate instances, which
represent a Type-1 clone (i.e., identical code fragments). An ‘Extract
Method’ refactoring was applied, resulting in the extraction of the method
putNodeGroup
Name(nodeName String, nodeGroupId int, nodeGroups Map, rootTo
NodeGroup Map) from makeNodeGroups() in the InternalTopologyBuilder
class. For the complexity metrics, we observed varied behavior: CC re-
mained unchanged, some metrics showed improvement (NL, NLE, HEFF,
HPL, and HTRP), while others did not improve (HCPL, HDIF, HNDB,
HPV, HVOL, MIMS, MI, MISEI, and MISM). Regarding the size metrics,
none showed improvement. For coupling metrics, NII improved, whereas
NOI did not.

• Type-2 code clone. Figure 10 depicts a Type-2 clone that has been re-
factored. This example highlights two duplicate instances, categorized
as a Type-2 clone (i.e., syntactically identical fragments). The method
entitiesForCurrentMode() was extracted from generateClassPairs_1_1
(classTemplate String, superTemplate String, superPrefix String)
in the MapClassGenerator class using the ‘Extract Method’ refactoring
operation. The complexity metrics have shown improvement, while the
design size metrics have also improved, with the exception of CLOC. For
coupling metrics, NOI has improved, whereas NII has not.

• Type-3 code clone. Figure 11 shows a Type-3 clone that has been refact-
ored. The example illustrates two duplicate instances, identified as a Type-
3 clone (i.e., copied fragments with further modifications such as changed,
added, or removed statements). Through the ‘Extract Method’ refact-
oring, the method runSimpleScript(String name, String[] script)
was extracted in the TestScriptLanguage class. The complexity metrics
have improved overall, with the exception of HDIF, which has decreased,
while NL and NLE remain unchanged. Size metrics have also improved,

27

except for CLOC. For coupling metrics, NOI has improved, but NII has
decreased.

Lesson 3: Some state-of-the-art metrics can capture the developer’s
intention of removing code duplication with different degrees of im-
provement and degradation of software quality. When removing code
duplication, developers often perform ‘Extract Method’ refactoring with the
expectation of improving code quality. Yet, the state-of-the-art metrics may
reflect varying levels of improvement or even degradation following these re-
factoring events. For example, in Figure 12, we demonstrate the code snip-
pet depicting the instances of code duplication before and after refactoring.
We can see that refactoring mining tools detect ‘Extract Method’ refactor-
ing from project commoms-bcel16 to extract createAnnotationEntries from
getAnnotationEntries. This example emphasizes how refactoring can have
mixed effects, positively influencing some metrics while negatively impacting
others. As can be seen, its coupling metrics (NII and NOI) have been improved.
However, its complexity metrics (CC, NL, NLE, HCPL, HDIF, HEFF, HNDB,
HPL, HPV, HTRP, HVOL, MIMS, MI, MISEI, and MISM) and size metrics
(LOC, TLOC, LLOC, TLLOC, CLOC, NOS, and TNOS) have not been im-
proved. For metrics where the metrics do not capture the developer’s intention,
several possible explanations can be consideblack:

• Inadequacy of the metrics for certain scenarios. The metrics used to assess
software quality, may not always be the most suitable for reflecting the spe-
cific intention behind a refactoring. For instance, a developer may intend
to improve readability or maintainability, but standard structural metrics
may not effectively quantify these aspects. This misalignment between
developer goals and the measublack outcomes can lead to discrepancies in
how the impact of refactoring is perceived.

• Limitations of the metrics. The state-of-the-art metrics have inherent lim-
itations and may not comprehensively capture the effects of refactoring.
For example, metrics such as CC focus on the control flow but may over-
look improvements in code modularity. This indicates a need to either
refine existing metrics or introduce new ones that better align with de-
veloper goals, particularly in cases of complex refactoring.

• Deviation from developer intentions. In some cases, developers’ intentions,
as stated in commit messages, may not align with the actual changes
performed in the codebase. This could happen for various reasons. For
example, a commit message may report the removal of duplicate code,
but the implementation might only partially address the duplication or
introduce new dependencies, resulting in no measurable improvement or
even metric degradation.

16https://github.com/apache/commons-bcel/commit/67dfdf60f5f8ccb8ed910bfe9d1cdc6e84f0db36

28

https://github.com/apache/commons-bcel/commit/67dfdf60f5f8ccb8ed910bfe9d1cdc6e84f0db36

Commit message indicating the removal of code duplication

Metric values after clone refactoring

Number of Incoming Invocations (NII): 2
Number of Outgoing Invocations (NOI): 1
Cyclomatic Complexity (CC): 1
Nesting Level (NL): 2
Nesting Level Else-if (NLE): 2
Hal. Calculated Program Length (HCPL): 141.86
Hal. Difficulty (HDIF): 27.85
Hal. Effort (HEFF): 8993.43
Hal. Number of Delivered Bugs (HNDB): 432.46
Hal. Program Length (HPL): 64
Hal. Program Vocabulary (HPV): 33
Hal. Time Required to Program (HTRP): 499.63
Hal. Volume (HVOL): 322.84
Maintainability Index (MIMS): 60.21
Maintainability Index (MI): 102.96
Maintainability Index (MISEI): 95.66
Maintainability Index (MISM): 55.94
Lines of Code (LOC): 11
Total Lines of Code (TLOC): 11
Logical Lines of Code (LLOC): 10
Total Logical Lines of Code (TLLOC): 10
Lines with Comments (CLOC): 1
Number of Statements (NOS): 6
Total Number of Statements (TNOS): 6

Code snippet depicting the first instance of code duplication before refactoring

Code snippet depicting the second instance of code duplication before refactoring

Code snippet depicting the removal of the duplicated code through the `Extract Method' refactoring

Metric values before clone refactoring

Number of Incoming Invocations (NII): 3
Number of Outgoing Invocations (NOI): 2
Cyclomatic Complexity (CC): 0
Nesting Level (NL): 1
Nesting Level Else-if (NLE): 1
Hal. Calculated Program Length (HCPL): 58.05
Hal. Difficulty (HDIF): 11.66
Hal. Effort (HEFF): 1001.43
Hal. Number of Delivered Bugs (HNDB): 100.09
Hal. Program Length (HPL): 21
Hal. Program Vocabulary (HPV): 17
Hal. Time Required to Program (HTRP): 55.63
Hal. Volume (HVOL): 85.83
Maintainability Index (MIMS): 69.21
Maintainability Index (MI): 118.36
Maintainability Index (MISEI): 134.25
Maintainability Index (MISM): 78.51
Lines of Code (LOC): 7
Total Lines of Code (TLOC): 7
Logical Lines of Code (LLOC): 6
Total Logical Lines of Code (TLLOC): 6
Lines with Comments (CLOC): 3
Number of Statements (NOS): 3
Total Number of Statements (TNOS): 3

Figure 12: Example of selected commit message from commons-bcel project.

29

6. Implications

Further advancing quality metrics and duplicate code removal. The
existing literature discusses various automatic refactoring approaches aimed at
assisting practitioners in detecting antipatterns or code smells. Baqais and
Alshayeb [123] have highlighted the growing interest in automatic refactoring
studies. The researchers explored the potential of machine learning to identify
refactoring opportunities. Since features play a vital role in the quality of ma-
chine learning models obtained, this study can contribute to determining which
metrics can serve as effective features in machine learning algorithms, facilitat-
ing the accurate recommendation of refactoring opportunities at different levels
of granularity (i.e., class, method, field), which can assist developers in automat-
ically making their decisions. For example, incorporating the most impactful
metrics as features in predicting whether a given piece of code should undergo
a specific refactoring operation can enhance developers’ confidence in accepting
recommended refactorings or selecting the most suitable refactoring candidate.
This knowledge is needed because, in practice, the built model should require as
little data as possible. Furthermore, since we observe that some of the quality
metrics did not capture any improvement, we plan to conduct more experiments
to validate the effectiveness of these metrics to explore whether the observations
are due to the appropriateness of the quality metrics or to the needed validation
and clarity of the perception of the developers.
Putting developer in the loop when designing refactoring recom-

mendation systems. Based on the findings, it becomes evident that different
structural metrics have the capacity to depict code duplication, thereby influen-
cing software quality in diverse ways. Certain metrics improve software quality,
whereas others might result in its decline. This underscores the importance of
involving developers in the design of refactoring recommendation systems, ef-
fectively engaging them in the process. This approach emerges as effective in
discerning meaningful refactorings that align with the perspectives of developers
[124, 125, 7].
Examining the code duplicate removal potentials with refactoring.

Our study reveals the context in which developers refactor the code to elim-
inate code duplicates. Our future research direction can focus on providing a
comprehensive taxonomy for code duplication-aware refactoring practices. This
taxonomy can show various contexts of code duplicates and refactoring and can
demonstrate different forms of code reuse. Thereafter, researchers can build
on top of our findings to better understand developer practices and investigate
to what extent this taxonomy for refactoring with awareness of duplicate code
improves the system’s quality.
Understanding the completeness of the quality metric capturing du-
plicate code removal as documented by developers. We observe that
not all quality metrics can capture the improvement in duplicate code removal
perceived by developers in their commit messages. Although quality metrics
can help pinpoint design flaws for refactoring recommendation systems, such
a recommendation would be meaningful if qualitative insights from developers

30

complemented it. Furthermore, the alignment or disparity between the enhance-
ment of software quality as perceived by developers and its evaluation through
quality metrics can be attributed to factors such as the focused nature of the
duplication removal, the extent of duplication, and the potential compensatory
changes. Future research is encouraged to consider the direct effect of duplic-
ate removal and the broader context of code changes and their implications for
quality metrics.
Investigating the characteristics and effects of eliminating code du-

plication on software quality. The results advance our understanding of the
effects of eliminating code duplication on software quality. It is evident that
certain software quality metrics can be used as indicators for code fragments
that are more likely to be extracted and identified as problematic and should be
removed by refactoring. Consequently, a threshold can be established to show
when quality metrics reach a level where duplicate code will have a negative
effect on maintenance and need to be refactored.

7. Threats to Validity

In this section, we describe potential threats to the validity of our research
method and the actions we took to mitigate them.

Internal Validity. The accuracy of our analysis is primarily dependent
on the precision of the refactoring mining tools, as these tools may miss the
detection of some refactorings. However, previous studies [5, 86, 85] report that
RefactoringMiner and RefDiff have high precision and recall scores compared
to other state-of-the-art refactoring detection tools, giving us confidence in using
the tools. Another potential threat to validity is related to commit messages.
This study does not exclude commits containing tangle code changes [126, 127],
where developers made changes related to different tasks and one of these tasks
could be related to quality improvement. If these changes were committed at
once, there is a possibility that the individual changes merge and that the ori-
ginal task cannot be traced back. Similarly to the previous study [7], we did not
consider filtering out such changes in this study. Moreover, our manual ana-
lysis is time-consuming and error-prone, which we tried to mitigate by focusing
mainly on commits known to contain refactorings.

Another potential threat to validity is sample bias, where the choice of the
data can directly impact the results. Therefore, we explored a large sample
of projects from the SmartSHARK dataset [9], to ensure the quality of the
findings and diversify the sources to reduce the bias of the data belonging to the
same entity. The qualitative analysis was conducted by a single author, which
could introduce bias into the process. However, commits that were debatable
were discarded. We also provide our dataset online for further refinement and
analysis.

Construct Validity. A potential threat to construct validity relates to the
set of metrics, as it may miss some properties of the selected internal quality
attributes. To address this potential threat, we mitigate it by choosing well-

31

known metrics that encompass various properties of each attribute, as reported
in the literature [95].

External Validity. Our analysis was limited to only open-source Java
projects. However, we were able to examine 128 projects, which were well-
commented and exhibited diversity in terms of size, contributors, number of
commits, and refactorings. Still, we believe that the results found in this
study are largely language-agnostic. However, certain language-specific char-
acteristics, such as syntax complexity and tooling support, can influence du-
plication patterns. Although we expect similar trends across languages with
similar paradigms, a comprehensive analysis encompassing various languages is
recommended to confirm this generalization.

8. Conclusion

We conducted an empirical study to investigate the alignment between code
duplicate removal and software design metrics focusing on 5 internal quality
attributes and 32 structural metrics. In particular, we obtained a corpus of more
than two million refactoring commits from 128 open-source Java projects. We
then extracted 32 structural metrics to identify code duplicate removal commits
and the refactoring operations associated with them. In summary, the main
conclusions are:

—Our findings show that some state-of-the-art metrics can capture the de-
veloper’s intention of removing code duplication with different degrees of im-
provement and degradation of software quality.

—Many metrics associated with key quality attributes, such as cohesion,
coupling, complexity, and size, reflect the developers’ intentions for duplicate
removal mentioned in commit messages. In contrast, there are instances where
the metrics do not represent the quality improvements stated by the developers.

—As for inheritance, NOC generally decreases as the developer intends to re-
move code duplication. DIT and NOA exhibit opposite variations in inheritance,
so these findings motivate a deeper investigation to understand the mismatch
between theory and practice.

Implications. As most of the mapped metrics associated with the main
quality attributes successfully capture developers’ intentions for removing code
duplicates, as is evident from the commit messages, we believe our study enables
the following novel applications:

—Given that features significantly influence the quality of machine learning
models, we can help identify which metrics may function as effective features
within these algorithms, thus supporting developers in their decision-making.
Using the most influential metrics as features to predict whether a particular
code fragment should be subject to a specific refactoring operation, we can en-
hance developers’ confidence in accepting recommended refactorings or selecting
the most suitable refactoring candidate.

—Empirical researchers can focus on providing a comprehensive taxonomy
for code duplication-aware refactoring practices, showing various contexts of
code duplicates and refactoring and demonstrating different forms of code reuse.

32

—A qualitative investigation through a developer survey can be conducted
to better understand the motivation behind refactoring activities in the context
of code duplicate removal to improve software metrics.

9. Acknowledgments

Declaration of generative AI and AI-assisted technologies in the writ-
ing process. During the preparation of this work, the author used the Chat-
GPT web interface and the Wrietfull tool to improve the language and readab-
ility of the manuscript. After using this tool, the author reviewed and edited
the content as needed and takes full responsibility for the content of the public-
ation.

References

[1] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach, Science of computer programming 74 (7) (2009)
470–495.

[2] P. Thongtanunam, W. Shang, A. E. Hassan, Will this clone be short-lived? Towards a better
understanding of the characteristics of short-lived clones, Empirical Software Engineering
24 (2) (2019) 937–972.

[3] R. Fanta, V. Rajlich, Removing clones from the code, Journal of Software Maintenance:
Research and Practice 11 (4) (1999) 223–243.

[4] M. Fowler, K. Beck, J. Brant, W. Opdyke, d. Roberts, Refactoring: Improving the Design of
Existing Code, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.
URL http://dl.acm.org/citation.cfm?id=311424

[5] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of github contributors,
in: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ACM, 2016, pp. 858–870.

[6] E. Murphy-Hill, A. P. Black, Breaking the barriers to successful refactoring: Observations and
tools for Extract Method, in: Proceedings of the 30th international conference on Software
engineering, 2008, pp. 421–430.

[7] J. Pantiuchina, M. Lanza, G. Bavota, Improving code: The (mis) perception of quality met-
rics, in: 2018 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), IEEE, 2018, pp. 80–91.

[8] E. A. AlOmar, M. W. Mkaouer, A. Ouni, M. Kessentini, On the impact of refactoring on the
relationship between quality attributes and design metrics, in: 2019 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM), IEEE, 2019, pp.
1–11.

[9] A. Trautsch, F. Trautsch, S. Herbold, Msr mining challenge: The smartshark repository
mining data, arXiv preprint arXiv:2102.11540.

[10] H. A. Sahraoui, R. Godin, T. Miceli, Can metrics help to bridge the gap between the im-
provement of oo design quality and its automation?, in: icsm, IEEE, 2000, p. 154.

[11] E. Stroulia, R. Kapoor, Metrics of refactoring-based development: An experience report, in:
OOIS 2001, Springer, 2001, pp. 113–122.

[12] Y. Kataoka, T. Imai, H. Andou, T. Fukaya, A quantitative evaluation of maintainability
enhancement by refactoring, in: International Conference on Software Maintenance, 2002.
Proceedings., IEEE, 2002, pp. 576–585.

33

http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424

[13] S. Demeyer, Maintainability versus performance: What’s the effect of introducing polymorph-
ism, Edegem, Belgium: Universiteit Antwerpe.

[14] L. Tahvildari, K. Kontogiannis, J. Mylopoulos, Quality-driven software re-engineering,
Journal of Systems and Software 66 (3) (2003) 225–239.

[15] R. Leitch, E. Stroulia, Assessing the maintainability benefits of design restructuring using
dependency analysis, in: Proceedings. 5th International Workshop on Enterprise Networking
and Computing in Healthcare Industry (IEEE Cat. No. 03EX717), IEEE, 2003, pp. 309–322.

[16] B. Du Bois, T. Mens, Describing the impact of refactoring on internal program quality, in:
International Workshop on Evolution of Large-scale Industrial Software Applications, 2003,
pp. 37–48.

[17] L. Tahvildari, K. Kontogiannis, A metric-based approach to enhance design quality through
meta-pattern transformations, in: Seventh European Conference onSoftware Maintenance and
Reengineering, 2003. Proceedings., IEEE, 2003, pp. 183–192.

[18] B. Du Bois, S. Demeyer, J. Verelst, Refactoring-improving coupling and cohesion of existing
code, in: 11th working conference on reverse engineering, IEEE, 2004, pp. 144–151.

[19] B. Du Bois, S. Demeyer, J. Verelst, Does the" refactor to understand" reverse engineering
pattern improve program comprehension?, in: Ninth European Conference on Software Main-
tenance and Reengineering, IEEE, 2005, pp. 334–343.

[20] B. Geppert, A. Mockus, F. Robler, Refactoring for changeability: A way to go?, in: 11th
IEEE International Software Metrics Symposium (METRICS’05), IEEE, 2005, pp. 10–pp.

[21] J. Ratzinger, M. Fischer, H. Gall, Improving evolvability through refactoring, in: Proceedings
of the 2005 international workshop on Mining software repositories, 2005, pp. 1–5.

[22] R. Moser, A. Sillitti, P. Abrahamsson, G. Succi, Does refactoring improve reusability?, in:
International Conference on Software Reuse, Springer, 2006, pp. 287–297.

[23] D. Wilking, U. F. Kahn, S. Kowalewski, An empirical evaluation of refactoring., e-Informatica
1 (1) (2007) 27–42.

[24] K. Stroggylos, D. Spinellis, Refactoring–does it improve software quality?, in: Fifth Interna-
tional Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007), IEEE, 2007, pp.
10–10.

[25] R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, A case study on the impact of
refactoring on quality and productivity in an agile team, in: IFIP Central and East European
Conference on Software Engineering Techniques, Springer, 2007, pp. 252–266.

[26] S. V. Shrivastava, V. Shrivastava, Impact of metrics based refactoring on the software quality:
a case study, in: TENCON 2008-2008 IEEE Region 10 Conference, IEEE, 2008, pp. 1–6.

[27] Y. Higo, Y. Matsumoto, S. Kusumoto, K. Inoue, Refactoring effect estimation based on
complexity metrics, in: 19th Australian Conference on Software Engineering (aswec 2008),
IEEE, 2008, pp. 219–228.

[28] K. N. Reddy, A. A. Rao, A quantitative evaluation of software quality enhancement by refact-
oring using dependency oriented complexity metrics, in: 2009 Second International Conference
on Emerging Trends in Engineering & Technology, IEEE, 2009, pp. 1011–1018.

[29] M. Alshayeb, Empirical investigation of refactoring effect on software quality, Information
and software technology 51 (9) (2009) 1319–1326.

[30] M. Alshayeb, Refactoring effect on cohesion metrics, in: 2009 International Conference on
Computing, Engineering and Information, IEEE, 2009, pp. 3–7.

[31] K. Usha, N. Poonguzhali, E. Kavitha, A quantitative approach for evaluating the effective-
ness of refactoring in software development process, in: 2009 Proceeding of International
Conference on Methods and Models in Computer Science (ICM2CS), IEEE, 2009, pp. 1–7.

[32] G. Hegedűs, G. Hrabovszki, D. Hegedűs, I. Siket, Effect of object oriented refactorings on
testability, error proneness and other maintainability attributes, in: Proceedings of the 1st
Workshop on Testing Object-Oriented Systems, ACM, 2010, pp. 1–8.

34

[33] R. Shatnawi, W. Li, An empirical assessment of refactoring impact on software quality using a
hierarchical quality model, International Journal of Software Engineering and Its Applications
5 (4) (2011) 127–149.

[34] F. A. Fontana, S. Spinelli, Impact of refactoring on quality code evaluation, in: Proceedings
of the 4th Workshop on Refactoring Tools, 2011, pp. 37–40.

[35] M. Alshayeb, The impact of refactoring to patterns on software quality attributes, Arabian
Journal for Science and Engineering 36 (7) (2011) 1241–1251.

[36] P. Lerthathairat, N. Prompoon, An approach for source code classification using software
metrics and fuzzy logic to improve code quality with refactoring techniques, in: International
Conference on Software Engineering and Computer Systems, Springer, 2011, pp. 478–492.

[37] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, I. Hemati Moghadam, Experimental as-
sessment of software metrics using automated refactoring, in: Proceedings of the ACM-IEEE
international symposium on Empirical software engineering and measurement, 2012, pp. 49–
58.

[38] S. M. Ibrahim, S. A. Salem, M. A. Ismail, M. Eladawy, Identification of nominated classes
for software refactoring using object-oriented cohesion metrics, International Journal of Com-
puter Science Issues (IJCSI) 9 (2) (2012) 68.

[39] S. Singh, K. S. Kahlon, Effectiveness of encapsulation and object-oriented metrics to refactor
code and identify error prone classes using bad smells, ACM SIGSOFT Software Engineering
Notes 36 (5) (2011) 1–10.

[40] S. Singh, K. S. Kahlon, Effectiveness of refactoring metrics model to identify smelly and error
prone classes in open source software, ACM SIGSOFT Software Engineering Notes 37 (2)
(2012) 1–11.

[41] A. Murgia, R. Tonelli, M. Marchesi, G. Concas, S. Counsell, J. McFall, S. Swift, Refactoring
and its relationship with fan-in and fan-out: An empirical study, in: 2012 16th European
Conference on Software Maintenance and Reengineering, IEEE, 2012, pp. 63–72.

[42] S. Kannangara, W. Wijayanayake, Impact of refactoring on external code quality improve-
ment: An empirical evaluation, in: 2013 International Conference on Advances in ICT for
Emerging Regions (ICTer), IEEE, 2013, pp. 60–67.

[43] V. Veerappa, R. Harrison, An empirical validation of coupling metrics using automated re-
factoring, in: 2013 ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, IEEE, 2013, pp. 271–274.

[44] C. Napoli, G. Pappalardo, E. Tramontana, Using modularity metrics to assist move method
refactoring of large systems, in: 2013 Seventh International Conference on Complex, Intelli-
gent, and Software Intensive Systems, IEEE, 2013, pp. 529–534.

[45] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, A. De Lucia, An empirical study
on the developers’ perception of software coupling, in: Proceedings of the 2013 International
Conference on Software Engineering, IEEE Press, 2013, pp. 692–701.

[46] N. Kumari, A. Saha, Effect of refactoring on software quality, in: InFourth International
Conference on Advances in Computing and Information Technology (ACITY 2014). Delhi,
India, 2014.

[47] G. Szóke, G. Antal, C. Nagy, R. Ferenc, T. Gyimóthy, Bulk fixing coding issues and its effects
on software quality: Is it worth refactoring?, in: 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation, IEEE, 2014, pp. 95–104.

[48] O. Chaparro, G. Bavota, A. Marcus, M. Di Penta, On the impact of refactoring operations on
code quality metrics, in: 2014 IEEE International Conference on Software Maintenance and
Evolution, IEEE, 2014, pp. 456–460.

[49] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, F. Palomba, An experimental investigation
on the innate relationship between quality and refactoring, Journal of Systems and Software
107 (2015) 1–14.

[50] S. Kannangara, W. Wijayanayake, An empirical evaluation of impact of refactoring on internal
and external measures of code quality, arXiv preprint arXiv:1502.03526.

35

[51] M. Gatrell, S. Counsell, The effect of refactoring on change and fault-proneness in commercial
c# software, Science of Computer Programming 102 (2015) 44–56.

[52] D. Cedrim, L. Sousa, A. Garcia, R. Gheyi, Does refactoring improve software structural
quality? a longitudinal study of 25 projects, in: Proceedings of the 30th Brazilian Symposium
on Software Engineering, ACM, 2016, pp. 73–82.

[53] R. Malhotra, A. Chug, An empirical study to assess the effects of refactoring on software main-
tainability, in: 2016 International Conference on Advances in Computing, Communications
and Informatics (ICACCI), IEEE, 2016, pp. 110–117.

[54] M. W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó. Cinnéide, K. Deb, On the use of many
quality attributes for software refactoring: a many-objective search-based software engineering
approach, Empirical Software Engineering 21 (6) (2016) 2503–2545.

[55] G. Kaur, B. Singh, Improving the quality of software by refactoring, in: 2017 International
Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 2017, pp. 185–
191.

[56] A. Chávez, I. Ferreira, E. Fernandes, D. Cedrim, A. Garcia, How does refactoring affect
internal quality attributes?: A multi-project study, in: Proceedings of the 31st Brazilian
Symposium on Software Engineering, ACM, 2017, pp. 74–83.

[57] G. Szőke, G. Antal, C. Nagy, R. Ferenc, T. Gyimóthy, Empirical study on refactoring large-
scale industrial systems and its effects on maintainability, Journal of Systems and Software
129 (2017) 107–126.

[58] R. S. Bashir, S. P. Lee, C. C. Yung, K. A. Alam, R. W. Ahmad, A methodology for impact
evaluation of refactoring on external quality attributes of a software design, in: 2017 Inter-
national Conference on Frontiers of Information Technology (FIT), IEEE, 2017, pp. 183–188.

[59] H. Mumtaz, M. Alshayeb, S. Mahmood, M. Niazi, An empirical study to improve software
security through the application of code refactoring, Information and Software Technology 96
(2018) 112–125.

[60] V. Alizadeh, M. Kessentini, Reducing interactive refactoring effort via clustering-based multi-
objective search, in: 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), IEEE, 2018, pp. 464–474.

[61] V. Alizadeh, M. A. Ouali, M. Kessentini, M. Chater, Refbot: intelligent software refactoring
bot, in: 2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), IEEE, 2019, pp. 823–834.

[62] P. Techapalokul, E. Tilevich, Code quality improvement for all: Automated refactoring for
scratch, in: 2019 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE, 2019, pp. 117–125.

[63] S. Counsell, M. Arzoky, G. Destefanis, D. Taibi, On the relationship between coupling and
refactoring: An empirical viewpoint, in: 2019 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), IEEE, 2019, pp. 1–6.

[64] S. Fakhoury, D. Roy, A. Hassan, V. Arnaoudova, Improving source code readability: theory
and practice, in: 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC), IEEE, 2019, pp. 2–12.

[65] S. Rebai, O. B. Sghaier, V. Alizadeh, M. Kessentini, M. Chater, Interactive refactoring docu-
mentation bot, in: 2019 19th International Working Conference on Source Code Analysis and
Manipulation (SCAM), IEEE, 2019, pp. 152–162.

[66] V. Alizadeh, H. Fehri, M. Kessentini, Less is more: From multi-objective to mono-objective
refactoring via developer’s knowledge extraction, in: 2019 19th International Working Con-
ference on Source Code Analysis and Manipulation (SCAM), IEEE, 2019, pp. 181–192.

[67] V. Alizadeh, M. Kessentini, M. W. Mkaouer, M. Ocinneide, A. Ouni, Y. Cai, An interactive
and dynamic search-based approach to software refactoring recommendations, IEEE Trans-
actions on Software Engineering 46 (9) (2018) 932–961.

36

[68] S. Rebai, V. Alizadeh, M. Kessentini, H. Fehri, R. Kazman, Enabling decision and objective
space exploration for interactive multi-objective refactoring, IEEE Transactions on Software
Engineering 48 (5) (2020) 1560–1578.

[69] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim, L. Sousa, W. Oizumi, Refactor-
ing effect on internal quality attributes: What haven’t they told you yet?, Information and
Software Technology 126 (2020) 106347.

[70] E. A. AlOmar, P. T. Rodriguez, J. Bowman, T. Wang, B. Adepoju, K. Lopez, C. Newman,
A. Ouni, M. W. Mkaouer, How do developers refactor code to improve code reusability?, in:
International Conference on Software and Software Reuse, Springer, 2020, pp. 261–276.

[71] A. C. Bibiano, V. Soares, D. Coutinho, E. Fernandes, J. L. Correia, K. Santos, A. Oliveira,
A. Garcia, R. Gheyi, B. Fonseca, et al., How does incomplete composite refactoring affect
internal quality attributes?, in: Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 149–159.

[72] C. Abid, M. Kessentini, V. Alizadeh, M. Dhaouadi, R. Kazman, How does refactoring impact
security when improving quality? a security-aware refactoring approach, IEEE Transactions
on Software Engineering 48 (3) (2020) 864–878.

[73] C. Abid, V. Alizadeh, M. Kessentini, M. Dhaouadi, R. Kazman, Prioritizing refactorings for
security-critical code, Automated Software Engineering 28 (2) (2021) 1–28.

[74] M. Riansyah, P. Mursanto, Empirical evaluation of the impact of refactoring on internal
quality attributes, in: 2020 International Conference on Advanced Computer Science and
Information Systems (ICACSIS), IEEE, 2020, pp. 463–470.

[75] I. Alazzam, B. Abuata, G. Mhediat, Impact of refactoring on oo metrics: A study on the
extract class, extract superclass, encapsulate field and pull up method, International Journal
of Machine Learning and Computing 10 (1).

[76] O. Hamdi, A. Ouni, E. A. AlOmar, M. Ó. Cinnéide, M. W. Mkaouer, An empirical study on
the impact of refactoring on quality metrics in android applications, in: 2021 IEEE/ACM 8th
International Conference on Mobile Software Engineering and Systems (MobileSoft), IEEE,
2021, pp. 28–39.

[77] E. A. AlOmar, T. Wang, V. Raut, M. W. Mkaouer, C. Newman, A. Ouni, Refactoring for
reuse: an empirical study, Innovations in Systems and Software Engineering (2022) 1–31.

[78] G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia, F. Palomba, F. Ferrucci,
Toward understanding the impact of refactoring on program comprehension, in: 2022 IEEE
international conference on software analysis, evolution and reengineering (SANER), IEEE,
2022, pp. 731–742.

[79] A. Ouni, E. A. AlOmar, O. Hamdi, M. Ó. Cinnéide, M. W. Mkaouer, M. A. Saied, On the
impact of single and co-occurrent refactorings on quality attributes in android applications,
Journal of Systems and Software (2023) 111817.

[80] M. W. Mkaouer, M. Kessentini, M. Ó. Cinnéide, S. Hayashi, K. Deb, A robust multi-objective
approach to balance severity and importance of refactoring opportunities, Empirical Software
Engineering 22 (2) (2017) 894–927.

[81] F. Fioravanti, G. Migliarese, P. Nesi, Reengineering analysis of object-oriented systems via
duplication analysis, in: Proceedings of the 23rd International Conference on Software En-
gineering. ICSE 2001, IEEE, 2001, pp. 577–586.

[82] G. Antoniol, U. Villano, E. Merlo, M. Di Penta, Analyzing cloning evolution in the linux
kernel, Information and Software Technology 44 (13) (2002) 755–765.

[83] M. Rieger, S. Ducasse, M. Lanza, Insights into system-wide code duplication, in: 11th Working
Conference on Reverse Engineering, IEEE, 2004, pp. 100–109.

[84] J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto, G. Bavota, M. D.
Penta, Why developers refactor source code: A mining-based study, ACM Transactions on
Software Engineering and Methodology (TOSEM) 29 (4) (2020) 1–30.

37

[85] D. Silva, M. T. Valente, Refdiff: detecting refactorings in version histories, in: Proceedings
of the 14th International Conference on Mining Software Repositories, IEEE Press, 2017, pp.
269–279.

[86] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Accurate and efficient
refactoring detection in commit history, in: Proceedings of the 40th International Conference
on Software Engineering, ACM, 2018, pp. 483–494.

[87] L. Xiao, G. Zhao, X. Wang, K. Li, E. Lim, C. Wei, T. Yu, X. Wang, An empirical study on the
usage of mocking frameworks in apache software foundation, Empirical Software Engineering
29 (2) (2024) 39.

[88] A. Mockus, R. T. Fielding, J. D. Herbsleb, Two case studies of open source software devel-
opment: Apache and mozilla, ACM Transactions on Software Engineering and Methodology
(TOSEM) 11 (3) (2002) 309–346.

[89] A. Mockus, R. T. Fielding, J. Herbsleb, A case study of open source software development: the
apache server, in: Proceedings of the 22nd international conference on Software engineering,
2000, pp. 263–272.

[90] K. Crowston, J. Howison, Assessing the health of open source communities, Computer 39 (5)
(2006) 89–91.

[91] P. C. Rigby, D. M. German, M.-A. Storey, Open source software peer review practices: a case
study of the apache server, in: Proceedings of the 30th international conference on Software
engineering, 2008, pp. 541–550.

[92] J. C. Duenas, F. Cuadrado, M. Santillán, J. L. Ruiz, et al., Apache and eclipse: Comparing
open source project incubators, IEEE software 24 (6) (2007) 90–98.

[93] M. Weiss, G. Moroiu, P. Zhao, Evolution of open source communities, in: Open Source
Systems: IFIP Working Group 2.13 Foundation on Open Source Software, June 8–10, 2006,
Como, Italy 2, Springer, 2006, pp. 21–32.

[94] C. Severance, The apache software foundation: Brian behlendorf, Computer 45 (10) (2012)
8–9.

[95] S. R. Chidamber, C. F. Kemerer, A metrics suite for object oriented design, IEEE Transactions
on software engineering 20 (6) (1994) 476–493.

[96] M. Lorenz, J. Kidd, Object-oriented software metrics, Vol. 131, Prentice Hall Englewood
Cliffs, 1994.

[97] T. J. McCabe, A complexity measure, IEEE Transactions on software Engineering (4) (1976)
308–320.

[98] S. Henry, D. Kafura, Software structure metrics based on information flow, IEEE transactions
on Software Engineering (5) (1981) 510–518.

[99] B. A. Nejmeh, Npath: a measure of execution path complexity and its applications, Commu-
nications of the ACM 31 (2) (1988) 188–200.

[100] G. Destefanis, S. Counsell, G. Concas, R. Tonelli, Agile processes in software engineering and
extreme programming (2014) 157–170.
URL http://dl.acm.org/citation.cfm?id=2813544.2813555

[101] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed? an explorat-
ory study on how developers document their refactoring activities in commit messages, in:
Proceedings of the 3nd International Workshop on Refactoring-accepted. IEEE, 2019.

[102] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, M. Kessentini, How we
refactor and how we document it? on the use of supervised machine learning algorithms to
classify refactoring documentation, Expert Systems with Applications 167 (2021) 114176.

[103] M. R. Islam, M. F. Zibran, On the characteristics of buggy code clones: A code quality
perspective, in: 2018 IEEE 12th International Workshop on Software Clones (IWSC), IEEE,
2018, pp. 23–29.

38

http://dl.acm.org/citation.cfm?id=2813544.2813555
http://dl.acm.org/citation.cfm?id=2813544.2813555
http://dl.acm.org/citation.cfm?id=2813544.2813555

[104] V. Singh, V. Bhattacherjee, Evaluation and application of package level metrics in assessing
software quality, Vol. 58, Foundation of Computer Science, 2012.

[105] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics bulletin 1 (6) (1945)
80–83.

[106] R. J. Grissom, J. J. Kim, Effect sizes for research : a broad practical approach, Mahwah, N.J.
; London : Lawrence Erlbaum Associates, 2005, formerly CIP.

[107] B. Henderson-Sellers, Object-oriented metrics: measures of complexity, Prentice-Hall, Inc.,
1995.

[108] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, K. Words, Aries: Refactoring support en-
vironment based on code clone analysis., in: IASTED Conf. on Software Engineering and
Applications, 2004, pp. 222–229.

[109] Y. Higo, T. Kamiya, S. Kusumoto, K. Inoue, Aries: refactoring support tool for code clone,
ACM SIGSOFT Software Engineering Notes 30 (4) (2005) 1–4.

[110] Y. Higo, S. Kusumoto, K. Inoue, A metric-based approach to identifying refactoring oppor-
tunities for merging code clones in a Java software system, Journal of Software Maintenance
and Evolution: Research and Practice 20 (6) (2008) 435–461.

[111] R. Tairas, J. Gray, Increasing clone maintenance support by unifying clone detection and
refactoring activities, Information and Software Technology 54 (12) (2012) 1297–1307.

[112] Y. Bian, G. Koru, X. Su, P. Ma, Spape: A semantic-preserving amorphous procedure extrac-
tion method for near-miss clones, Journal of Systems and Software 86 (8) (2013) 2077–2093.

[113] R. Yue, Z. Gao, N. Meng, Y. Xiong, X. Wang, J. D. Morgenthaler, Automatic clone recom-
mendation for refactoring based on the present and the past, in: 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), IEEE, 2018, pp. 115–126.

[114] N. Yoshida, S. Numata, E. Choiz, K. Inoue, Proactive clone recommendation system for
Extract Method refactoring, in: 2019 IEEE/ACM 3rd International Workshop on Refactoring
(IWoR), IEEE, 2019, pp. 67–70.

[115] F. Arcelli Fontana, M. Zanoni, F. Zanoni, A duplicated code refactoring advisor, in: Agile
Processes in Software Engineering and Extreme Programming: 16th International Conference,
XP 2015, Helsinki, Finland, May 25-29, 2015, Proceedings 16, Springer, 2015, pp. 3–14.

[116] E. A. AlOmar, A. Ivanov, Z. Kurbatova, Y. Golubev, M. W. Mkaouer, A. Ouni, T. Bryksin,
L. Nguyen, A. Kini, A. Thakur, Anticopypaster: Extracting code duplicates as soon as they
are introduced in the ide, in: 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2022, pp. 1–4.

[117] E. A. AlOmar, A. Ivanov, Z. Kurbatova, Y. Golubev, M. W. Mkaouer, A. Ouni, T. Bryksin,
L. Nguyen, A. Kini, A. Thakur, Just-in-time code duplicates extraction, Information and
Software Technology (2023) 107169.

[118] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Behind the intent of extract method refactoring: A
systematic literature review, IEEE Transactions on Software Engineering.

[119] W. G. Griswold, D. Notkin, Automated assistance for program restructuring, ACM Transac-
tions on Software Engineering and Methodology (TOSEM) 2 (3) (1993) 228–269.

[120] M. Mondal, C. K. Roy, K. A. Schneider, A survey on clone refactoring and tracking, Journal
of Systems and Software 159 (2020) 110429.

[121] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know it, IEEE Trans-
actions on Software Engineering 38 (1) (2012) 5–18.

[122] H. A. Nguyen, A. T. Nguyen, T. N. Nguyen, Filtering noise in mixed-purpose fixing commits
to improve defect prediction and localization, in: 2013 IEEE 24th international symposium
on software reliability engineering (ISSRE), IEEE, 2013, pp. 138–147.

[123] A. A. B. Baqais, M. Alshayeb, Automatic software refactoring: a systematic literature review,
Software Quality Journal 28 (2) (2020) 459–502.

39

[124] M. Hall, N. Walkinshaw, P. McMinn, Supervised software modularisation, in: 2012 28th IEEE
International Conference on Software Maintenance (ICSM), IEEE, 2012, pp. 472–481.

[125] G. Bavota, F. Carnevale, A. De Lucia, M. Di Penta, R. Oliveto, Putting the developer in-
the-loop: An interactive ga for software re-modularization, in: Search Based Software Engin-
eering: 4th International Symposium, SSBSE 2012, Riva del Garda, Italy, September 28-30,
2012. Proceedings 4, Springer, 2012, pp. 75–89.

[126] K. Herzig, S. Just, A. Zeller, The impact of tangled code changes on defect prediction models,
Empirical Software Engineering 21 (2) (2016) 303–336.

[127] H. Kirinuki, Y. Higo, K. Hotta, S. Kusumoto, Hey! are you committing tangled changes?,
in: Proceedings of the 22nd International Conference on Program Comprehension, 2014, pp.
262–265.

40

	1 Introduction
	2 Related Work
	3 Study Design
	3.1 Extracted Dataset
	3.2 Quality Attributes & Quality Metrics Selection
	3.3 Data Analysis

	4 Results & Discussion
	4.1 What is the quantitative code quality assessment of code duplications that have been intentionally removed by developers?
	4.2 What are the refactoring operations that are associated with code duplicate removal?

	5 Lessons Learned
	6 Implications
	7 Threats to Validity
	8 Conclusion
	9 Acknowledgments

