
Deciphering Refactoring Branch Dynamics in Modern
Code Review: An Empirical Study on Qt

Eman Abdullah AlOmara,∗

aStevens Institute of Technology, Hoboken, NJ, USA

Abstract

Context: Modern code review is a widely employed technique in both industrial

and open-source projects, serving to enhance software quality, share knowledge,

and ensure compliance with coding standards and guidelines. While code re-

view is extensively studied for its general challenges, best practices, outcomes,

and socio-technical aspects, little attention has been paid to how refactoring is

reviewed and what developers prioritize when reviewing refactored code in the

‘Refactor’ branch.

Objective: The goal is to understand the review process for refactoring changes

in the ‘Refactor’ branch and to identify what developers care about when re-

viewing code in this branch.

Method: In this study, we present a quantitative and qualitative examination

to understand the main criteria developers use to decide whether to accept or

reject refactored code submissions and identify the challenges inherent in this

process.

Results: Analyzing 2,154 refactoring and non-refactoring reviews across Qt

open-source projects, we find that reviews involving refactoring from the ‘Re-

factor’ branch take significantly less time to resolve in terms of code review ef-

forts. Additionally, documentation of developer intent is notably sparse within

the ‘Refactor’ branch compared to other branches. Furthermore, through them-

atic analysis of a substantial sample of refactoring code review discussions, we

∗Corresponding author

Email address: ealomar@stevens.edu (Eman Abdullah AlOmar)

Preprint submitted to Journal of LATEX Templates 31st January 2025

ar
X

iv
:2

41
0.

04
67

8v
2

 [
cs

.S
E

]
 3

0
Ja

n
20

25

construct a comprehensive taxonomy consisting of 12 refactoring review criteria.

Conclusion: Our findings underscore the importance of developing precise

and efficient tools and techniques to aid developers in the review process amidst

refactorings.

Keywords: refactoring, code review, developer perception, software quality

1. Introduction

Refactoring is a crucial practice for maintaining code quality as software

evolves. Its significance has expanded beyond mere code cleanup to become

a cornerstone of modern software development. This has attracted significant

attention from researchers, evident in the numerous research papers dedicated

to the topic [1]. Another key practice in maintaining software quality is code

review [2]. It has become another important to reduce technical debt, and

to detect potential coding errors [2–4]. Code review represents the manual

inspection of any newly performed changes to the code, for the purpose of

verifying integrity, compliance with standards, and error-freedom [5]. Today’s

Modern Code Review (MCR) process is typically lightweight and tool-based,

relying heavily on discussions between authors and reviewers to decide whether

to merge or discard a code change [6].

Refactoring changes, like any other code modifications, must undergo review

before being merged. Failure to apply refactoring properly can lead to adverse

effects, including compromised software quality [7–10] and inducing bugs [11, 12]

making refactoring changes more challenging to review. However, little is known

about how reviewers examine refactoring related code changes, especially when

it is intended to serve the same purpose of improving software quality. Accord-

ing to the industrial case study, AlOmar et al. [13] has found that reviewing

refactoring related code changes takes a significantly longer time, in comparison

with other code changes, demonstrating the need for refactoring review culture.

Yet, little is known about what criteria reviewers consider when they review

refactoring. Most of refactoring studies focus on its automation by recommend-

2

ing refactoring opportunities in the source code [14–16], or mining performed

refactorings in change histories of software repositories [17]. Moreover, while re-

search on code reviews has concentrated on automation, such as recommending

the most suitable reviewer for a given code change [2], the review process for

refactoring changes in the ‘Refactor’ branch remains largely unexplored.

Figure 1: Example of a code review from Qt project using Gerrit [18, 19].

Building upon our previous research [13, 20], which revealed that refactoring

code reviews often take longer to be approved, we now delve deeper into the

specific practices of refactoring review within an ecosystem featuring a dedicated

‘Refactor’ branch. This investigation aims to provide insights into addressing

the challenges identified in our previous studies, thus contributing to a more

efficient and effective refactoring review process. Specifically, the goal of this

paper is to understand the criteria developers use when reviewing refactored

code in the ‘Refactor’ branch, focusing on what influences their decisions to

3

accept or reject submissions.

In our study, we explore two distinct venues where refactoring can occur:

the typical branch and the refactoring branch. The typical branch refers to

the standard development workflow where incremental changes and features

are integrated. In contrast, the refactoring branch is specifically dedicated to

restructuring and improving the codebase without altering its external beha-

vior. Figure 1 illustrates a segment of the refactoring review from the ‘Refactor’

branch and other branches within the Qt system. The top example shows a

code review that was created to refactor QMouseEvent to contain the position

inside the window. The developers submitted the code, while explicitly stating

that the refactoring was intended to rename the default accessors for positions

to localPos, windowPos and screenPos, to be explicit about their use. This

can also be seen in the final subject and description of the review that later

merged the modified code into production. Based on this example, we can

see that rename was one of the refactoring operations that developers consider

for code optimization, and author confirms its quality improvement as follows

“There’s no behavioural change. All I did was add the windowPos(), and make

sure it’s set correctly everywhere. Old code will continue to work just as be-

fore.” In contrast, the bottom example reveals changes to the QtBase module.

It focuses on enhancing the code by removing unnecessary elements, improving

readability, and making the code more maintainable. The review includes de-

tailed comments from developers discussing the impact and necessity of these

changes, aiming to ensure that the refactoring maintains the module’s function-

ality while improving its structure. This review had a longer review duration

and more extensive discussion compared to the ‘Refactor’ branch reviews. We

believe that early clarification of the ‘Refactor’ and the typical branch is crucial

for understanding their roles in the development process. The typical branch

often prioritizes feature development and bug fixes, while the refactoring branch

focuses on enhancing code quality, maintainability, and performance. By distin-

guishing between these two branches, we aim to highlight the unique challenges

and considerations associated with each, thereby providing a comprehensive

4

understanding of their impact on the software development lifecycle.

Therefore, we conduct our study using the following overarching question:

How do developers approach and evaluate refactoring tasks compared to non-

refactoring tasks during code reviews, and what patterns, quality attributes, and

topics are emphasized in these reviews?

To answer our research questions, we first extracted a set of 718 refactoring-

related code reviews in the ‘Refactor’ branch from the Qt ecosystem. Then,

we compared this set of refactoring-related code reviews in ‘Refactor’ branch,

with another two sets of code reviews, in terms of the number of reviewers,

number of review comments, number of inline comments, number of revision,

number of changed files, review duration, discussion and description length,

and code churn. Our empirical investigation indicates that refactoring-related

code reviews from ‘Refactor’ branch take significantly shorter to be resolved and

typically trigger fewer discussions between developers and reviewers to reach a

consensus. To understand the key characteristics of reviewing refactored code,

we perform a thematic analysis on a significant sample of these reviews. This

process resulted in a hierarchical taxonomy composed of four categories, and 12

sub-categories.

We provide our experiments package [21] to further replicate and extend our

study. The package contains raw data, analyzed data, statistical test results,

survey questions, and custom-built scripts used in our research.

The remainder of this paper is organized as follows. Section 2 provides

background on the Gerrit-based code review process. Section 3 reviews the

existing studies related to refactoring awareness and code review. Section 4

outlines our empirical setup in terms of data collection, analysis and research

question. Section 5 discusses our findings, while the research implication is

discussed in Section 6. Section 7 captures any threats to the validity of our

work, before concluding with Section 8.

5

Figure 2: Gerrit-based code review process overview.

2. Background

Code review involves the manual assessment of source code by humans to

identify defects and quality issues [22]. However, traditional code review prac-

tices have limitations when applied to globally distributed software development

[23]. In recent years, Modern Code Review (MCR) has emerged as a tool-based

system that is less formal than traditional methods. MCR has become popular

and is widely used in both proprietary software (e.g., Google, Microsoft) and

open-source software (e.g., OpenStack, Qt) [2]. In this study, we selected Gerrit

as it provides robust code review functionality that is essential to maintain code

quality and ensure thorough review processes. This feature is crucial for our

research’s needs, where code integrity and peer review are paramount. In the

following, we provide a brief overview of the Gerrit-based code review system,

a prominent tool frequently used in previous studies [24–27].

The code review process of the systems studied is based on Gerrit1, a col-

laborative code review framework. Gerrit facilitates developers in tagging sub-

mitted code changes directly and requesting their assignment to a reviewer.

Generally, a code change author opens a code review request containing a title,

a detailed description of the code change being submitted, written in natural

language, and the current code changes annotated. Once the review request is

submitted, it will appear in the requests backlog and be open to reviewers to

1https://www.gerritcodereview.com/

6

https://www.gerritcodereview.com/

choose from. Once reviewers are assigned to the review request, they inspect

the proposed changes and comment on the review request’s thread to start a

discussion with the author. This way, the authors and reviewers can discuss

the submitted changes, and reviewers can request revisions to the code being

reviewed. Following up discussions and revisions, a review decision is made to

either accept or decline, and so the proposed code changes are either “Merged”

to production or “Abandoned”.

A diagram, modeling a simplified bird’s view of the Gerrit-based code review

process, is shown in Figure 2. It begins with a “Request” for a review, which

is then assigned to a reviewer. The “Review”” phase follows, where the code is

assessed and discussed. If changes are needed, the code enters the “Revision”

phase, where it is revised based on feedback and can be discussed further. This

cycle continues until a decision is made to either “Merge” the code into the

main branch or “Abandon” the changes.

3. Related Work

Research on code review has been of importance to practitioners and re-

searchers. A considerable effort has been spent by the research community in

studying traditional and modern code review practices and challenges. This

literature has included case studies (e.g., [3, 13, 24, 25, 28–30]), user studies

(e.g., [31–35]), surveys (e.g., [2, 13, 36, 37]), and empirical experiments (e.g.,

[25, 30, 32, 38, 39]). However, most of the above studies focus on studying and

improving the effectiveness of modern code review in general, as opposed to

our work that focuses on understanding developers’ perception of code review

involving refactoring. In this section, we are only interested in research related

to refactoring-aware code review.

In a study performed at Microsoft, Bacchelli and Bird [2] observed and sur-

veyed developers to understand the challenges faced during code review. They

pointed out purposes for code review (e.g., improving team awareness and trans-

ferring knowledge among teams) along with the actual outcomes (e.g., creating

7

awareness and gaining code understanding). In a similar context, MacLeod et

al. [37] interviewed several teams at Microsoft and conducted a survey to in-

vestigate the human and social factors that influence developers’ experiences

with code review. Both studies found the following general code reviewing chal-

lenges: (1) finding defects, (2) improving the code, and (3) increasing know-

ledge transfer. Ge et al. [28, 29] developed a refactoring-aware code review tool

called ReviewFactor that automatically detects refactoring edits and separates

refactoring from non-refactoring changes with a focus on five refactoring types.

The tool was intended to support developers’ review process by distinguishing

between refactoring and non-refactoring changes, but it does not provide any

insights on the quality of the performed refactoring. Inspired by the work of

[28, 29], Alves et al. [34, 40] proposed a static analysis tool, called RefDistiller,

that helps developers inspect manual refactoring edits. The tool compares two

program versions to detect refactoring anomalies’ type and location. It sup-

ports six refactoring operations, detects incomplete refactorings, and provides

inspection for manual refactorings.

Coelho et al. [41] performed a systematic literature mapping study on re-

factoring tools to support modern code review. They raised the need for more

tools to explain composite refactorings. They also reported the need for more

surveys to assess the existing refactoring tools for modern code review in both

open-source and industrial projects. Pascarella et al. [42] investigated the ef-

fect of code review on bad programming practices (i.e., code smells). Their

approach mainly focused on comparing code smells at the file level before and

after the code review process. Additionally, they manually investigated whether

the severity of code smells was reduced in a code review or not. Their results

show that in 95% of the cases, the severity of code smells does not decrease with

a review. The reduction in code smells in the remaining few cases was impacted

by code insertion and refactoring-related changes.

Paixão et al. [43] explored if developers’ intents influence the evolution of

refactorings during the review of a code change by mining 1,780 reviewed code

changes from 6 open-source systems. Their main findings show that refactorings

8

are most often used in code reviews that implement new features, accounting for

63% of the code changes we studied. Only in 31% of the code reviews that em-

ployed refactorings the developers had the explicit intent of refactoring. Uchôa

et al. [44] reported the multi-project retrospective study that characterizes how

the process of design degradation evolves within each review and across multiple

reviews. The authors utilized software metrics to observe the influence of cer-

tain code review practices on combating design degradation. The authors found

that the majority of code reviews had little to no design degradation impact in

the analyzed projects. Additionally, the practices of long discussions and the

high proportion of review disagreement in code reviews were found to increase

design degradation. In their study on predicting design impactful changes in

modern code review with technical and/or social aspects, Uchôa et al. [45] ana-

lyzed reviewed code changes from seven open source projects. By evaluating six

machine learning algorithms, the authors found that technical features result

in more precise predictions, and the use of social features alone also leads to

accurate predictions.

A couple of studies considered pull requests as a main source of the study

code review process. Pantiuchina et al. [46] presented a mining-based study

to investigate why developers are performing refactoring in the history of 150

open source systems. Particularly, they analyzed 551 pull requests implemen-

ted refactoring operations and reported a refactoring taxonomy that generalizes

the ones existing in the literature. Coelho et al. [47] performed a quantitat-

ive and qualitative study exploring code reviewing-related aspects intending to

characterize refactoring-inducing pull requests. Their main finding show that

refactoring-inducing pull requests take significantly more time to merge than

non-refactoring-inducing pull requests.

AlOmar et al. [13] conducted a case study in an industrial setting to explore

refactoring practices in the context of modern code review from the following

five dimensions: (1) developers motivations to refactor their code, (2) how de-

velopers document their refactoring for code review, (3) the challenges faced

by reviewers when reviewing refactoring changes, (4) the mechanisms used by

9

reviewers to ensure the correctness after refactoring, and (5) developers and

reviewers assessment of refactoring impact on the source code’s quality. Their

findings show that refactoring code reviews take longer to be completed than

non-refactoring code reviews. In a follow-up work, AlOmar et al. [20] performed

an emperical study on OpenStack to understand the challenges developers faced

when reviewing refactoring changes. Their findings corroborate the results of

their industrial case study, indicating that refactoring changes require more

time for acceptance compared to non-refactoring changes. Brito and Valente

[48] introduced RAID, a refactoring-aware and intelligent diff tool to alleviate

the cognitive effort associated with code reviews. The tool relied on RefDiff [49]

and is fully integrated with the state-of-the-art practice of continuous integration

pipelines (GitHub Actions) and browsers (Google Chrome). The authors eval-

uated the tool with eight professional developers and found that RAID indeed

reduced the cognitive effort required for detecting and reviewing refactorings.

In another study, Kurbatova et al. [50] presented RefactorInsight, a plugin for

IntelliJ IDEA that integrates information about refactorings in diffs in the IDE,

auto folds refactorings in code diffs in Java and Kotlin, and shows hints with

their short descriptions.

To summarize, the study of open source projects that use either the Gerrit

tools or GitHub pull requests has been extensively studied (e.g., [24, 46, 51, 52]).

Since notable open-source organizations such as Eclipse, OpenStack, and Qt ad-

opted Gerrit as their code review management tool, we chose to analyze refact-

oring practices in modern code review from projects that adopted Gerrit as their

code review tool. Although there are recent studies that explored the motiva-

tion behind refactoring in pull requests [46, 47], to the best of our knowledge, no

prior studies have manually extracted all the criteria developers are facing when

submitting their refactored code for review from a dedicated ‘Refactor’ branch.

To gain a more in-depth understanding of the factors mostly associated with

refactoring review and to advance the understanding of refactoring-aware code

review, in this paper, we performed an empirical study on a rapidly evolving

open-source project. This study complements the existing efforts that are done

10

in an industrial environment [13] and open source systems [20, 46, 47] using

Gerrit and GitHub pull-based development.

4. Study Design

The main goal of our study is to understand the practice of refactoring in

the context of Modern Code Review (MCR) to characterize the criteria that

influence decision making when reviewing refactoring changes. Thus, we aim to

answer the following research questions:

• RQ1. How do refactoring reviews compare to non-refactoring reviews in

terms of code review efforts?

• RQ2. What textual patterns do developers use to describe their refactoring

needs in the ‘Refactor’ branch?

• RQ3. What quality attributes do developers consider when describing re-

factoring in the ‘Refactor’ branch?

• RQ4. What topics do developers discuss when reviewing refactoring tasks?

According to the guidelines reported by Runeson and Höst [53], we designed

an empirical study that consists of three steps, as depicted in Figure 3, and

discussed in the next subsections. Since our research questions are both quant-

itative and qualitative, we used tools/scripts along with manual activities to

investigate our data. Furthermore, the dataset utilized in this study is available

on our project website [21] for extension and replication purposes.

4.1. Data Collection

4.1.1. Studied Systems

In line with [30, 54, 55], to select the subject systems, we identified three

important criteria:

Criterion #1: Active MCR practices. Our goal is to study a system that

actively examines code changes through a code review tool. Therefore, we focus

11

P
h
a
s
e

1
:

D
a
t
a

C
o
l
l
e
c
t
i
o
n

P
h
a
s
e

3
:

D
a
t
a

A
n
a
l
y
s
i
s

Se
le

ct
 s

ys
te

m
s

us
in

g
3

cr
ite

ria
:

1:
 A

ct
iv

e
M

C
R

 p
ra

ct
ic

es
2:

 F
ul

l r
ev

ie
w

 c
ov

er
ag

e
3:

 H
as

 a
 d

ed
ic

at
ed

 `R
ef

ac
to

r'
br

an
ch

Q
ua

lit
at

iv
e

An
al

ys
is

Q
ua

nt
ita

tiv
e

An
al

ys
is

R
ev

ie
w

 a
ct

iv
ity

m
et

ric
s

ca
lc

ul
at

io
n

(re
fa

ca
to

rin
g

&
no

n-
re

fa
ct

or
in

g)

R
ev

ie
w

 a
ct

iv
ity

an
al

ys
is

Th
em

at
ic

 a
na

ly
si

s

 o

f r
ev

ie
w

 d
is

cu
ss

io
n

(re
fa

ct
or

in
g)

R
ef

ac
to

rin
g

cr
ite

ria
id

en
tif

ic
at

io
n

Ex
tra

ct
 c

od
e

re
vi

ew
 d

at
as

et

(2
96

,0
90

)
An

al
yz

e
re

fa
ct

or
in

g
re

vi
ew

s
(`R

ef
ac

to
r'

br
an

ch
)

(7
18

)

An
al

yz
e

re
fa

ct
or

in
g

re
vi

ew
s

(O
th

er
 b

ra
nc

he
s)

(1
,7

60
)

P
h
a
s
e

2
:

D
a
t
a

P
r
e
p
a
r
a
t
i
o
n

An
al

yz
e

no
n-

re
fa

ct
or

in
g

re
vi

ew
s

(O
th

er
 b

ra
nc

he
s)

(1
01

,3
53

)

R
ef

ac
to

rin
g

&
no

n-
re

fa
ct

or
in

g
re

vi
ew

s
da

ta
se

t

G
er

rit
 s

er
ve

r
C

od
e

re
vi

ew
da

ta
se

t
(2

96
,0

90
)

M
in

e
co

de
 re

vi
ew

da
ta

F
ig
u
re

3
:
O
v
e
rv

ie
w

o
f
o
u
r
e
x
p
e
ri
m
e
n
t
d
e
si
g
n
.

12

on systems where a number of reviews are performed using a code review tool

(i.e., systems which have review procedures in place), similar to [30, 54, 55].

Criterion #2: Full review coverage. Since we investigate the practice of

refactoring-related code reviews, we focus on systems that have many files with

100% review coverage (i.e., files where every change made to them is reviewed

before they are merged into the repositories), similar to studies that explored

code review practices in defective files [25, 54, 55].

Criterion #3: Has a dedicated ‘Refactor’ branch. Since we want to

study refactoring practices in MCR, we need to ensure that the subject systems

have sufficient refactoring-related instances to help us perform our statistical

analysis. So, we selected the project with the highest number of refactoring

reviews.

To satisfy criterion 1, we started by considering five systems (i.e., Open-

Stack,2 Qt,3 LibreOffice,4 VTK,5 ITK6) that use the Gerrit code review tool

and have been widely studied in previous research in MCR, e.g., [56–59]. We

then discarded VTK and ITK since Thongtanunam et al. [55] reported that

the linkage rate of code changes to the reviews for VTK is too low and ITK

does not satisfy criterion 2. As for criterion 3, after mining the code review

data, we found that Qt is the only system with a ‘Refactor’ branch. Due to the

human-intensive nature of carefully studying and analyzing refactoring practice

in MCR, we opt for performing an in-depth study on a single system. With the

above-mentioned criteria in mind, we select Qt, a cross-platform application and

user interface framework developed by Digia Corporation.

2https://review.opendev.org/
3https://codereview.qt-project.org/
4https://gerrit.libreoffice.org/
5http://vtk.org/
6http://itk.org/

13

4.1.2. Mining Code Review Data

We mined code review data using the RESTful API7 provided by Gerrit,

which returns the results in a JSON format. We used a script to automatically

mine the review data and store them in the SQLite database. All collected

reviews are closed (i.e., having a status of either “Merged” or “Abandoned”).

In total, we mined 296,372 code changes between December 2012 and April 2021

from Qt projects. An overview of the project’s statistics is provided in Table 1.

Table 1: Overview of the Qt studied system.

Item Count

Version 4.7 to 5.11

Line of code 21,256,665

No. of commits 1,659,190

No. of code changes 296,372

No. of developers 3,264

No. of files 351,387

Reviews in ‘Refactor’ branch 718

Reviews with keyword ‘refactor* ’ in title and description 1,760

Non-refactoring reviews from other branches 101,353

4.2. Data Preparation

Our main goal is to explore refactoring review culture in ‘Refactor’ branch.

However, to make a comparison, we select refactoring reviews containing the

keyword ‘refactor ’. Similarly to previous work on identifying refactoring changes

or defect-fixing or defect-inducing changes [5, 8, 46, 47, 55, 60–68], we utilize a

keyword-based mechanism to extract refactoring code review data from other

branches. The keyword-based approach was chosen for the manual inspection,

which required not only non-trivial efforts but also a deep knowledge of the do-

main. Specifically, we start by searching for the term ‘refactor* ’ in the title or

7https://gerrit-review.googlesource.com/Documentation/rest-apichanges.html

14

description (we use * to capture extensions like refactors, refactoring etc.). The

choice of ‘refactor ’, besides being used by various related studies, is intuitively

the first term to identify refactoring-related code review. However, since related

work on refactoring documentation shows that developers may use other syn-

onymous terms/phrases [64, 66, 69, 70], we ensure to exclude these synonymous

terms/phrases when selecting non-refactoring reviews. In summary, we have

extracted the following reviews.

• Refactoring reviews from the ‘Refactor’ branch. These reviews are spe-

cifically chosen from a dedicated ‘Refactor’ branch.

• Refactoring reviews containing the keyword ‘refactor’. These reviews in-

clude the keyword ‘refactor ’ in their title and description and are selected

from branches other than the ‘Refactor’ branch.

• Non-refactoring reviews from other branches. These reviews are selected

from branches other than the ‘Refactor’ branch, and they do not involve

refactoring or any synonymous terms/phrases commonly found in the lit-

erature.

To extract the set of refactoring-related code reviews, we follow a two-step

procedure: (1) automatic filtering, and (2) manual filtering.

(1) Automatic Filtering. In the first step, we extract all of the 718 review

instances in the ‘Refactor’ branch. We notice that the ratio of these reviews is

very small in comparison with the total number of the mined reviews, i.e.,

296,372.

(2) Manual Filtering. To ensure the correctness of the data, we manually

inspected and read all these refactoring reviews. Our goal is to have a gold set

of reviews in which the developers explicitly reported the refactoring activity.

This gold set will serve to check later criteria that are mostly associated with

refactoring review discussion. Furthermore, since related work on refactoring

documentation shows that developers may use synonymous terms/phrases [64,

15

66, 69, 70], we ensure to exclude these synonymous terms/phrases and manually

inspect them when selecting non-refactoring reviews.

4.3. Data Analysis

To address our research questions, a structured mixed-method study was

designed to combine elements of both quantitative and qualitative research.

4.3.1. Quantitative data analysis.

We leverage the data collected to compare refactoring and non-refactoring

reviews using review efforts, i.e., code review metrics. As we calculate the met-

rics of refactoring and non-refactoring code reviews, we want to distinguish,

for each metric, whether the variation is statistically significant. We first test

for normality using the Shapiro-Wilk normality test [71] and observe that the

distribution of code review activity metrics does not follow a normal distribu-

tion. Therefore, we use the Mann-Whitney U test [72], a non-parametric test,

to compare between the two groups, since these groups are independent of one

another. The null hypothesis is defined by no variation in the metric values

of refactoring and non-refactoring code reviews. Thus, the alternative hypo-

thesis indicates that there is a variation in the metric values. Additionally,

the variation between values of both sets is considered significant if its associ-

ated p-value is less than 0.05. Furthermore, we use the Cliff’s Delta (δ) [73], a

non-parametric effect size measure, to estimate the magnitude of the differences

between refactoring and non-refactoring reviews. As for its interpretation, we

follow the guidelines reported by Romano et al. [74]:

• Negligible for | δ |< 0.147

• Small for 0.147 ≤| δ |< 0.33

• Medium for 0.33 ≤| δ |< 0.474

• Large for | δ |≥ 0.474

16

To measure the extent of the relationship between these metrics, we con-

ducted a Spearman rank correlation test (a non-parametric measure) [75]. We

chose a rank correlation because this type of correlation is resilient to data that

is not normally distributed.

4.3.2. Qualitative data analysis.

To answer RQ2, RQ3, and RQ4, we perform the analysis of the data. The au-

thor manually inspects refactoring review subject, description, and discussions

by considering both the general comments and the inline comments. Next, we

describe the methodology for building and refining the taxonomy.

Taxonomy Building and Refinement. The goal of the manual analysis

was to categorize the topics discussed in the ‘Refactor’ branch within each of the

refactoring review instances. The entire process was supported by a spreadsheet

application equipped with tagging capabilities. For each instance, the evaluator

was presented with: (i) the metadata as returned by Gerrit (e.g., Gerrit Id,

Gerrit URL); (ii) the branch that was matched in that specific instance; and

(iii) the subject and description in Gerrit for easier inspection.

The categorization required the assignment of one or more labels to an in-

stance, describing the topics discussed. In case manual inspection revealed that

reviews were not actually used for refactoring tasks, the instance was discarded.

When analyzing the review discussions, we adopted a thematic analysis ap-

proach based on the guidelines provided by Cruzes et al. [76]. Thematic analysis

is one of the most used methods in Software Engineering literature (e.g., [77]),

which is a technique for identifying and recording patterns (or “themes”) within

a collection of descriptive labels, which we call “codes”. For each refactoring re-

view, we proceeded with the analysis using the following steps: i) Initial reading

of the review discussions; ii) Generating initial codes (i.e., labels) for each re-

view; iii) Translating codes into themes, sub-themes, and higher-order themes;

iv) Reviewing the themes to find opportunities for merging; v) Defining and

naming the final themes, and creating a model of higher-order themes and their

underlying evidence.

17

The above-mentioned steps were performed independently by two annotat-

ors. One annotator performed the labeling of review discussions independently

of the other author who was responsible for reviewing the taxonomy currently

drafted. By the end of each iteration, the authors met and refined the taxonomy.

It is important to note that the approach is not a single-step process. As the

codes were analyzed, some of the first cycle codes were subsumed by other codes,

relabeled, or dropped altogether. As the author progressed with the translation

to themes, there was some rearrangement, refinement, and reclassification of

data into different or new codes. For example, we aggregated, into “Refact-

oring”, the preliminary categories “move method”, “refactoring operations”,

and “rename” that were analyzed. We used the thematic analysis technique to

address RQ4.

Taxonomy Validation. In addition to the iterative process of building

the taxonomy, we need to externally validate it from a practitioner’s point of

view [78, 79]. The aim of this validation is to investigate whether it reflects

actual MCR practices. To do so, we validated the taxonomy with a senior

developer, with 8 years of industrial experience, and with 4 years of experience

in code review. The survey contained 9 questions related to the correctness and

representativeness of our taxonomy and proposed guidelines.

5. Results and Discussion

5.1. How do refactoring reviews compare to non-refactoring reviews in terms of

code review efforts?

Motivation. The first research question aims to explore whether reviewing re-

factoring in ‘Refactor’ branch takes longer compared to refactoring reviews con-

taining the keyword ‘refactor’ and non-refactoring reviews from other branches.

Understanding the differences in review efforts helps identify the unique chal-

lenges and requirements of refactoring reviews compared to non-refactoring ones.

Approach. To address RQ1, we intend to compare refactoring reviews with

non-refactoring reviews, to see whether there are any differences in terms of

18

Table 2: Statistics of code review activity efforts.

M
e
tr
ic
s

R
e
fa
c
to
ri
n
g
co

d
e
re
v
ie
w

(‘
re
fa
c
to
r’

b
ra

n
c
h
)

N
o
n
-r
e
fa
c
to
ri
n
g
co

d
e
re
v
ie
w

S
ta
ti
st
ic
a
l
d
iff

e
re
n
ce

M
in

Q
1

M
e
d
ia
n

M
e
a
n

Q
3

M
a
x

M
in

Q
1

M
e
d
ia
n

M
e
a
n

Q
3

M
a
x

p
-v
a
lu
e

C
li
ff
’s

d
e
lt
a
(δ
)

N
u
m
b
er

of
re
v
ie
w
er
s

0
2

3
2.
93

4
7

0
1

2
3
.0
1

4
8

0
sm

al
l
(0
.1
1
)

N
u
m
b
er

of
re
v
ie
w

co
m
m
en
ts

1
3

3
4.
67

5
8

1
3

6
9
.2
0

11
22

0
m
ed
iu
m

(0
.3
)

N
u
m
b
er

of
in
li
n
e
co
m
m
en
ts

0
0

0
1.
12

0
0

0
0

0
3
.7
2

2
5

0
m
ed
iu
m

(0
.3
4)

N
u
m
b
er

of
re
v
is
io
n
s

1
1

1
1
.8
7

2
3

1
1

1
2
.4
4

2
3

0
.0
0
0
2
1
1

sm
al
l
(0
.0
9
)

N
u
m
b
er

of
ch
an

ge
d
fi
le
s

0
1

2
49
.8
4

4
8

0
1

2
9
.0
8

4
8

0
.6
3
69

sm
a
ll
(0
.0
1
)

R
ev
ie
w

d
u
ra
ti
on

(s
ec
on

d
s)

0
0
.1
5

1.
0
8

9
0.
58

20
.6
6

48
.4
1

0
16
.9
6

16
3.
6
7

2
3
5
6.
32

1
51
5
.0
1

37
1
9
.1
2

0
m
ed
iu
m

(0
.5
)

L
en
g
th

of
d
is
cu
ss
io
n
(c
h
ar
ac
te
rs
)

22
15
0

1
90

42
7.
32

29
8

51
8

9
13
5

34
1.
50

2
16
0
.0
6

10
0
8

23
1
2

1
.6
2
1
e
-1
4

sm
al
l
(0
.2
)

L
en
g
th

of
d
es
cr
ip
ti
on

(c
h
ar
ac
te
rs
)

64
9
6

12
3

17
2.
12

20
0

35
5

55
10
2

16
3

2
60
.2

2
95

5
84

1
.2
3
9
e
-8

sm
al
l
(0
.1
5
)

C
o
d
e
ch
u
rn

0
4

14
1
36
6.
49

67
16
1

0
5

22
3
6
4
.8
2

81
19
1

0
.0
0
5
0
4
5

sm
al
l
(0
.0
7
)

M
e
tr
ic
s

R
e
fa
c
to
ri
n
g
co

d
e
re
v
ie
w

(‘
re
fa
c
to
r’

b
ra

n
c
h
)

R
e
fa
c
to
ri
n
g
co

d
e
re
v
ie
w

(O
th
e
r
b
ra

n
c
h
e
s)

S
ta
ti
st
ic
a
l
d
iff

e
re
n
ce

M
in

Q
1

M
e
d
ia
n

M
e
a
n

Q
3

M
a
x

M
in

Q
1

M
e
d
ia
n

M
e
a
n

Q
3

M
a
x

p
-v
a
lu
e

C
li
ff
’s

d
e
lt
a
(δ
)

N
u
m
b
er

of
re
v
ie
w
er
s

0
2

3
2.
93

4
7

1
3

4
3
.8
2

5
8

0
sm

al
l
(0
.2
7
)

N
u
m
b
er

of
re
v
ie
w

co
m
m
en
ts

1
3

3
4.
67

5
8

1
4

8
1
2
.8
4

16
34

0
m
ed
iu
m

(0
.4
3)

N
u
m
b
er

of
in
li
n
e
co
m
m
en
ts

0
0

0
1.
12

0
0

0
0

0
5
.5
5

4
10

0
m
ed
iu
m

(0
.3
8)

N
u
m
b
er

of
re
v
is
io
n
s

1
1

1
1
.8
7

2
3

1
2

3
4
.1
3

5
9

0
m
ed
iu
m

(0
.4
5)

N
u
m
b
er

of
ch
an

ge
d
fi
le
s

0
1

2
49
.8
4

4
8

0
1

3
7
.8
2

8
18

2
.1
8
7
e
-1
4

sm
al
l
(0
.2
)

R
ev
ie
w

d
u
ra
ti
on

(s
ec
on

d
s)

0
0
.1
5

1.
0
8

9
0.
58

20
.6
6

48
.4
1

0
21
.3
7

12
6.
0
9

1
3
4
2.
24

1
91
7
.1
2

37
1
9
.1
2

0
la
rg
e
(0
.5
6)

L
en
g
th

of
d
is
cu
ss
io
n
(c
h
ar
ac
te
rs
)

22
15
0

1
90

42
7.
32

29
8

51
8

36
19
8

51
3

6
57
1
.1
1

1
5
28

3
4
69

0
m
ed
iu
m

(0
.3
7)

L
en
g
th

of
d
es
cr
ip
ti
on

(c
h
ar
ac
te
rs
)

64
9
6

12
3

17
2.
12

20
0

35
5

68
11
5

20
6.
5

3
04
.1
5

3
5
6

7
1
5

0
m
ed
iu
m

(0
.3
1)

C
o
d
e
ch
u
rn

0
4

14
1
36
6.
49

67
16
1

0
39

12
7.
5

4
25
.2
6

3
5
6

8
2
2

0
m
ed
iu
m

(0
.4
4)

code review efforts or metrics listed in Table 2, and Figures 4, 5. Since our re-

factoring set in the ‘Refactor’ branch contains 718 reviews, we sampled 718 non-

refactoring reviews and refactoring reviews containing the keyword ‘refactor*’

from the remaining ones in the review framework. This size provides a compre-

hensive view of the refactoring review practices within the ‘Refactor’ branch,

capturing a diverse range of scenarios and developer interactions. To ensure

the representativeness of the sample [80], we use stratified random sampling by

choosing reviews from the rest of the reviews.

19

Results. By looking at the statistical summary in Table 2, and Figures 4, 5,

we found that reviewing refactoring changes in ‘Refactor’ branch differs, with

fewer reviewers (µ = 2.93), fewer review comments (µ = 4.67), fewer inline com-

ments (µ = 1.12), fewer revisions (µ = 1.87), shorter review time (µ = 90.58),

and fewer discussions and descriptions (µ = 427.32, µ = 172.12, respectively)

compared to reviewing non-refactoring changes. However, reviewing refactoring

changes in the ‘Refactor’ branch shows more file changes (µ = 49.84), and more

added and deleted lines between revisions (µ = 1366.49). As shown in Table

2, we performed a non-parametric Mann-Whitney U test and we obtained a

statistically significant p-value when the values of these two groups were com-

pared (p-value < 0.05 for all review efforts, except number of changed files),

and accompanied with a small, medium, or large effect size depending on the

review effort/metric.

Regarding the comparison between reviewing refactoring changes from the

‘Refactor’ branch and reviewing refactoring changes with the keyword ‘refactor*’

from other branches, we observed similar patterns as in the previous compar-

ison. Reviewing refactoring changes in the ‘Refactor’ branch significantly differs,

with fewer reviewers, fewer review comments, fewer inline comments, fewer re-

visions, shorter review time, and fewer discussions and descriptions compared

to reviewing refactoring changes from other branches. However, in this com-

parison, there are more changed files and more added and deleted lines between

revisions when reviewing refactoring changes from other branches. The only

difference between this set and the previous comparison is that the difference in

the number of changed files is significant.

We speculate that the observed differences in reviewing refactoring changes

from the ‘Refactor’ branch and reviewing refactoring changes with the keyword

‘refactor*’ from other branches and non-refactoring reviews can be attributed

to several factors:

Branch Isolation. Reviewing refactoring changes in the ‘Refactor’ branch took

significantly less time compared to the non-refactoring changes. This indicates

that the isolation of refactoring activities could streamline the review process,

20

as reviewers can focus solely on refactoring tasks without being distracted by

other types of changes. The statistically significant shorter review time (p-value

< 0.05) in the ‘Refactor’ branch compared to other branches supports the idea

that a dedicated branch for refactoring helps reduce the overall review effort.

• Example. In review ID 4058 (see Figure 6), the refactoring change was

reviewed in just 2.41 seconds with only 4 comments, highlighting how the

isolated branch facilitated a quick and focused review.

Visibility. Fewer review comments and inline comments in the ‘Refactor’

branch suggest that reviewers quickly understand the changes and provide fo-

cused feedback. This lower number of comments, supported by a statistically

significant p-value, implies that changes in the ‘Refactor’ branch might be re-

ceiving more targeted and effective attention from developers specializing in

refactoring.

• Example. Review ID 3245 (see Figure 6) had 0 inline comments and was

approved by a single reviewer, showing how dedicated visibility in the

‘Refactor’ branch helps in quick and clear review processes.

Quality. The number of revisions needed and fewer discussions and descriptions

in the ‘Refactor’ branch compared to other branches indicate a higher initial

code quality. The lower number of revisions and the fewer extensive discussions,

with statistically significant differences, suggest that the refactoring changes are

better prepared and understood, aligning with the higher quality hypothesis.

• Example. Review ID 1290 (see Figure 6) required just one revision and had

minimal back-and-forth discussion, suggesting that the initial refactoring

proposal was of high quality.

Developer Expertise. A lower number of reviewers is required for refactoring

changes in the ‘Refactor’ branch compared to non-refactoring changes. The

significant difference in the number of reviewers, supported by p-value < 0.05,

indicates that specialized knowledge in the ‘Refactor’ branch allows for more

efficient and effective reviews, with fewer people needed to reach a consensus.

21

• Example. In review ID 1733 (see Figure 6), two experienced developers

quickly approved the change with minimal comments, demonstrating the

impact of specialized expertise on the efficiency of the review process.

Collaboration Dynamics. Concise discussions and descriptions in the ‘Re-

factor’ branch suggest a more focused and collaborative environment. The stat-

istically significant reduction in discussion length supports the notion that a

collaborative environment in the ‘Refactor’ branch leads to more efficient com-

munication and quicker resolution of review comments.

• Example. Review ID 123377 (see Figure 6) had a concise discussion with

96 characters and was finalized quickly in 0.22 seconds, reflecting the col-

laborative and focused nature of the ‘Refactor’ branch.

Moreover, we conjecture that reviewing refactoring from other branches trig-

gers longer discussions between the code change authors and the reviewers as

we notice that several refactoring-related actions are being extensively discussed

before reaching an agreement. While previous studies have found a similar pat-

tern in GitHub’s pull requests in open-source systems [47], Gerrit [20], and using

code review tools in industry [13], there is no study that looked at the main reas-

ons for refactoring-related discussions in ‘Refactor’ branch to take significantly

less effort to be reviewed. Therefore, the findings of RQ1 have motivated us to

manually analyze these reviews and extract the main criteria related to review-

ing refactored code (RQ4).

Further, we observe that refactoring-related code reviews from ‘Refactor’

branch impact larger code churn and more changes across files than non-refactoring

code changes. These results are expected and agree with previous work [47, 81,

82], which found that refactored code has higher size-related metrics and larger

changes promote refactorings. We also noticed that the number of developers

who participated in the code review process is lower due to the high number of

lines added, modified, or deleted between revisions. However, unlike a previous

finding [47], no evidence of the correlation between the number of reviewers and

refactoring was detected.

22

(
a
)

N
u
m

b
e
r

o
f
r
e
v
ie

w
e
r
s

(
b
)

N
u
m

b
e
r

o
f
r
e
v
ie

w
c
o
m

m
e
n
t
s

(
c
)

N
u
m

b
e
r

o
f
in

li
n
e

c
o
m

m
e
n
t
s

(
d
)

N
u
m

b
e
r

o
f
r
e
v
is
io

n
s

(
e
)

N
u
m

b
e
r

o
f
c
h
a
n
g
e
d

fi
le

s
(
f)

R
e
v
ie

w
d
u
r
a
t
io

n
(
s
e
c
o
n
d
s
)

(
g
)

L
e
n
g
t
h

o
f
d
is
c
u
s
s
io

n
(
c
h
a
r
a
c
t
e
r
s
)

(
h
)

L
e
n
g
t
h

o
f
d
e
s
c
r
ip

t
io

n
(
c
h
a
r
a
c
t
e
r
s
)

(
i)

C
o
d
e

c
h
u
r
n

F
ig
u
re

4
:
B
o
x
p
lo
ts

o
f
m
e
tr
ic
s
v
a
lu
e
s
o
f
re
fa
c
to

ri
n
g
re
v
ie
w
s
(‘
R
e
fa
c
to

r’
)
b
ra

n
ch

a
n
d

n
o
n
-r
e
fa
c
to

ri
n
g
re
v
ie
w
s
(O

th
e
r
b
ra

n
ch

e
s)
.

23

(
a
)

N
u
m

b
e
r

o
f
r
e
v
ie

w
e
r
s

(
b
)

N
u
m

b
e
r

o
f
r
e
v
ie

w
c
o
m

m
e
n
t
s

(
c
)

N
u
m

b
e
r

o
f
in

li
n
e

c
o
m

m
e
n
t
s

(
d
)

N
u
m

b
e
r

o
f
r
e
v
is
io

n
s

(
e
)

N
u
m

b
e
r

o
f
c
h
a
n
g
e
d

fi
le

s
(
f)

R
e
v
ie

w
d
u
r
a
t
io

n
(
s
e
c
o
n
d
s
)

(
g
)

L
e
n
g
t
h

o
f
d
is
c
u
s
s
io

n
(
c
h
a
r
a
c
t
e
r
s
)

(
h
)

L
e
n
g
t
h

o
f
d
e
s
c
r
ip

t
io

n
(
c
h
a
r
a
c
t
e
r
s
)

(
i)

C
o
d
e

c
h
u
r
n

F
ig
u
re

5
:
B
o
x
p
lo
ts

o
f
m
e
tr
ic
s
v
a
lu
e
s
o
f
re
fa
c
to

ri
n
g
re
v
ie
w
s
(‘
R
e
fa
c
to

r’
)
b
ra

n
ch

a
n
d

re
fa
c
to

ri
n
g
re
v
ie
w
s
(O

th
e
r
b
ra

n
ch

e
s)
.

24

Example of Branch Isolation

Example of Visibility

Code Review Efforts (Review ID: 4058)

Number of reviewers: 3
Number of review comments: 4
Number of inline comments: 1
Number of revisions: 1
Number of changed files: 16
Review duration (seconds): 2.41
Length of discussion (characters): 406
Length of description (characters): 432
Code churn: 185

Code Review Efforts (Review ID: 3245)

Number of reviewers: 1
Number of review comments: 2
Number of inline comments: 0
Number of revisions: 1
Number of changed files: 1
Review duration (seconds): 0.014
Length of discussion (characters): 128
Length of description (characters): 106
Code churn: 1

Example of Quality

Code Review Efforts (Review ID: 1290)

Number of reviewers: 3
Number of review comments: 3
Number of inline comments: 0
Number of revisions: 1
Number of changed files: 13
Review duration (seconds): 0.14
Length of discussion (characters): 190
Length of description (characters): 160
Code churn: 110

Example of Developer Expertise

Code Review Efforts (Review ID: 1733)

Number of reviewers: 2
Number of review comments: 4
Number of inline comments: 3
Number of revisions: 1
Number of changed files: 16
Review duration (seconds): 2380.64
Length of discussion (characters): 571
Length of description (characters): 123
Code churn: 966

Example of Collaboration Dynamics

Code Review Efforts (Review ID: 123377)

Number of reviewers: 3
Number of review comments: 3
Number of inline comments: 0
Number of revisions: 2
Number of changed files: 1
Review duration (seconds): 0.02
Length of discussion (characters): 96
Length of description (characters): 124
Code churn: 2

Figure 6: Example of refactoring reviews from the ‘Refactor’ branch in the Qt project.25

Table 3: List of refactoring documentation (‘*’ captures the extension of the keyword).

Patterns

‘Refactor’ branch

Chang* (890) Fix* (340) Add* (226) Mov* (226) Creat* (139)

Remov* (121) Refactor* (107) Merg* (74) Renam* (33) Dependenc* (28)

Replac* (24) Get rid of (24) Improv* (18) Introduc* (18) Cleanup* (13)

Modif* (6) Split* (5) Extend* (4) Extract* (4) Polish* (4)

Reduc* (4) Remov* unused (4) Inlin* (3) Simplif* (3) Encapsulat* (2)

Code clean* (2) Organiz* (1) Housekeeping (1) Fix* regression (1)

Other branches

Refactor* (3669) Chang* (2113) Mov* (599) Add* (519) Fix* (427)

Remov* (342) Creat* (253) Simplif* (96) Introduc* (93) Renam* (89)

Replac* (71) Split* (70) Cleanup (68) Improv* (64) Extract* (50)

Modif* (48) Merg* (40) Reduc* (33) Extend* (26) Rewrit* (23)

Get rid of (22) Remov* unused (17) Dependenc* (14) Inlin* (13) Organiz* (12)

Encapsulat* (9) Restructur* (8) Remov* redundant (8) Enhanc* (7) Code clean* (6)

Reformat* (5) Rework* (4) Reorder* (3) Modulariz* (2) Polish* (2)

Reorganiz* (2) Fix regression (3) Cosmetic chang* (2) Customiz* (2) Re-writ* (1)

Less code (1) Chang* the name (1) Code clarity (1)

Summary. In the ‘Refactor’ branch, the review process is more focused

due to the branch’s dedicated purpose. This allows developers to concen-

trate more on refactoring activities. Further, reviews in the ‘Refactor’

branch tend to have shorter review times. This can be attributed to the

specialized knowledge of the reviewers who are familiar with refactoring

techniques, leading to quicker consensus and fewer iterations.

5.2. What textual patterns do developers use to describe their refactoring needs

in the ‘Refactor’ branch?

Motivation. Since there is no consensus on how to formally document the act

of refactoring code [65, 66], research question two identifies what textual pat-

terns developers have used to describe their refactoring activities in ‘Refactor’

branch. Identifying these patterns can reveal how developers communicate their

intentions and needs, which is crucial to improving documentation and review

processes.

Approach. We manually inspect Qt’s subject and description to identify re-

factoring documentation patterns in refactoring reviews from ‘Refactor’ branch

26

and refactoring reviews from other branches containing the keyword ‘refactor*’

in the subject and description. These patterns are represented as a keyword or

phrase that frequently occurs in refactoring reviews.

Results. Our in-depth inspection resulted in a list of 29 and 43 refactoring doc-

umentation patterns for refactoring reviews from ‘Refactor’ branch and other

branches, respectively, as shown in Table 3. Our findings show that the names

of refactoring operations (e.g., ‘mov*’, ‘renam*’, ‘extract*’) occur in the top

frequently occurring patterns, and these patterns are mainly linked to code ele-

ments at different levels of granularity such as classes, methods, and variables.

These specific terms are well-known software refactoring operations and indicate

developers’ knowledge of the catalog of refactoring operations. We also observe

that the top-ranked refactoring operation-related keywords include ‘mov*’, ‘re-

nam*’, and ‘extract*’. Moreover, we observe the occurrences of refactoring

specific terms such as ‘cleanup’, ‘get rid of’, and ‘remov* unused’.

RQ2 indicates that developers tend to use limited textual patterns to docu-

ment their refactorings in the ‘Refactor’ branch compared to refactoring reviews

from other branches. These patterns can provide either (1) a generic description

of problems developers encounter or (2) a specific refactoring operation name

following Fowler’s names [83]. Although previous studies show that rename re-

factorings are a common type of refactoring, e.g., [84], we notice that ‘mov*’

and ‘extract*’ are also among the topmost documented refactorings in ‘Refactor’

branch and other branches. This can be explained by the fact that developers

tend to make many design improvement decisions, including remodularizing

packages by moving classes, reducing class-level coupling, and increasing cohe-

sion by moving methods. This information can provide valuable references for

the practice of refactoring documentation. For example, whether refactoring-

related reviews have relevant information is a critical indicator of the quality of

refactoring reviews.

27

Table 4: Summary of refactoring patterns in ‘Refactor’ branch, clustered by refactoring related

categories.

Internal QA (%) External QA (%) Code Smell (%)

‘Refactor’ branch

Dependency (90.32%) Compatibility (70%) Dead Code (3.22%)

Inheritance (3.22%) Flexibility (20%)

Abstraction (3.22%) Performance (10%)

Complexity (3.22%)

Other branches

Inheritance (30.43%) Accessibility (35.63%) Code duplication (79.16%)

Dependency (30.43%) Performance (24.13%) Dead Code (10.41%)

Coupling (19.56%) Readability (18.39%) Switch Statement (4.16%)

Abstraction (10.86%) Compatibility(6.89%) Antipattern (4.16%)

Complexity (6.52%) Correctness (6.89%) Data Class (2.08%)

Composition (2.17%) Modularity (2.29%)

Stability (1.14%)

Usability (1.14%)

Flexibility (1.14%)

Robustness (1.14%)

Testability (1.14%)

Summary. Within the ‘Refactor’ branch, developers tend to use fewer

keywords in their documentation. This could be attributed to their spe-

cialized knowledge and expertise in refactoring techniques, which might

result in more precise and less confusing documentation for reviewers.

5.3. What quality attributes do developers consider when describing refactoring

in the ‘Refactor’ branch?

Motivation. Various studies have explored the bad programming practices

that trigger refactoring and the potential quality attributes that are optimized

when restructuring the code. In this research question, we investigate whether

developers explicitly mention the purpose of their refactoring activity, e.g., im-

proving structural metrics to fix code smells. Knowing the quality attributes

prioritized by developers helps to understand their focus areas and can guide

the creation of better refactoring guidelines and tools.

Approach. After identifying refactoring documentation patterns, we categorize

28

the patterns into main categories (similar to previous studies [65, 66]): (1)

internal quality attributes, (2) external quality attributes, and (3) code smells.

Results. Table 4 provides the list of refactoring documentation patterns,

ranked based on their frequency, which we identify in ‘Refactor’ branch and

other branches. We observe that developers mention key internal quality at-

tributes (such as ‘inheritance’, ‘complexity’, etc.), a few external quality attrib-

utes (such as ‘compatability’ and ‘performance’), and code smells (such as ‘dead

code’) that might impact code quality. To improve internal design, optimization

of the structure of the system with respect to its dependency and inheritance

appears to be the dominant focus, which is consistently mentioned in the review.

Concerning external quality attributes, we observe the mention of refactorings

to enhance nonfunctional attributes. Patterns such as ‘compatability’, ‘flexibil-

ity’, and ‘performance’ represent the the main focus in ‘Refactor’ branch, with

70%, 20%, and 10%, respectively. Finally, for code smells, developers mentioned

a few antipatterns such as ‘dead code’.

From RQ3, we observe that developers in the ‘Refactor’ branch tend to

provide less explicit documentation of their intent compared to other branches.

This could suggest that the ‘Refactor’ branch prioritizes higher code quality, al-

lowing reviewers to grasp the context and purpose of changes more easily even

without detailed documentation. For instance, developer discussed fixing design

issues by putting common functionalities into a superclass to eliminate duplic-

ate code, breaking up lengthier methods to make the code more readable, and

avoiding nested complex data structure to reduce code complexity. Moreover,

we observe that code smell is rarely documented in ‘Refactor’ branch with only

3.22%. Similarly, developers tend to report few external quality attributes,

focusing mainly on fixing compatability of the code.

29

Summary. Documentation of intent by developers is notably limited

within the ‘Refactor’ branch when compared to other branches. How-

ever, this observation may signify higher code quality within the ‘Re-

factor’ branch, as changes are clearer and more understandable to re-

viewers without explicit documentation. This suggests that developers in

the ‘Refactor’ branch prioritize key quality attributes such as compatibil-

ity, performance, complexity, and inheritance.

5.4. What topics do developers discuss when reviewing refactoring tasks?

Motivation. We pose this research question to develop a taxonomy of all re-

factoring contexts, where reviewers discuss refactoring in the ‘Refactor’ branch.

Analyzing discussion topics provides insights into the critical issues and con-

siderations during refactoring reviews, highlighting areas for potential improve-

ment.

Approach. To get a more qualitative sense, we manually inspect the Qt ecosys-

tem using a thematic analysis technique [76], to study the topics that reviewers

discuss when reviewing refactoring changes, so we understand the main reasons

for which refactoring reviews does not take shorter compared to non-refactoring

reviews or refactoring reviews from other branches.

Results. Upon analyzing the review discussions, we create a comprehensive

high-level categories of review criteria. Figure 7 shows the proposed taxonomy

of the criteria related to reviewing the refactored code. The taxonomy is com-

posed of two layers: The top layer contains 4 categories that group activities

with similar purposes, whereas the lower layer contains 12 subcategories that

essentially provide a fine-grained categorization. These refactoring review cri-

teria are centered on four main categories, as shown in the figure: (1) quality,

(2) refactoring, (3) objective, and (4) testing. It is worth noting that our cat-

egorization is not mutually exclusive, meaning that a review can be associated

with more than one category. An example of each category is provided in Table

5. In the rest of this subsection, we provide a more in-depth analysis of these

30

R
ef

ac
to

rin
g

Ta
xo

no
m

y
in

 `R
ef

ac
to

r'
B

ra
nc

h

Q
ua

lit
y

O
bj

ec
tiv

e
Te

st
in

g

Fe
at

ur
e

su
pp

or
t

Bu
g

fix
in

g

C
od

e
sm

el
l

In
te

rn
al

 q
ua

lit
y

at
tri

bu
te

Ex
te

rn
al

 q
ua

lit
y

at
tri

bu
te

Ad
di

tio
na

l t
es

t s
ui

te

Au
to

-te
st

 fi
x

C
le

an
 u

p
Te

st
 fi

le
 re

fa
ct

or
in

g

R
ef

ac
to

rin
g

Si
m

pl
ify

in
g

m
et

ho
d

ca
lls

M
et

ho
d

co
m

po
si

tio
n

Fe
at

ur
es

 m
ov

e

F
ig
u
re

7
:
R
e
fa
c
to

ri
n
g
re
v
ie
w

c
ri
te
ri
a
fr
o
m

‘R
e
fa
c
to

r’
b
ra

n
ch

in
m
o
d
e
rn

c
o
d
e
re
v
ie
w
.

31

categories.

Quality. The quality of design emerges as a crucial aspect of the refactoring

review process. As per the submitted reviews, developers delve into optimiz-

ing internal and external quality attributes while striving to avoid code smells.

They offer recommendations on coding practices and suggest ways to enhance

both internal and external quality attributes. This attention to detail is es-

sential because developers may not always grasp the full scope of the software

design. Additionally, developers often focus their refactoring efforts on classes

and methods that undergo frequent changes. This pattern is evident in the re-

views, where recurrent files are frequently mentioned. By repeatedly modifying

the same code elements, developers become more intimately acquainted with

the system, thereby enhancing their design decisions.

Refactoring. This category gathers reviews with a focus on evaluating the cor-

rectness of the code transformation and checking whether or not the submitted

changes lead to a safe and trustworthy refactoring. These refactoring reviews

discuss refactoring operation-related responses such as simplifying method calls,

method composition, and features move. As developers often interleave refact-

oring with other tasks, developers mentioned that combining refactoring with

other changes could potentially result in overshadowing errors, thus increasing

the likelihood of introducing bugs.

Objective. In this category, we have gathered cases where developers docu-

ment the feature-related, bug fix-related, and clean up-related activities to better

understand the rationale of the submitted code changes. This reveals how de-

velopers keep proposing areas of improvement pertaining to the perception and

the rationale of the change. It appears that the clarity of the documented

changes is of paramount importance in accepting the submitted refactoring

changes. We realized that the clarity of the explanation of what is being changed

and why affects review time and decision.

Testing. Refactoring is intended to maintain the behavior of the software.

Ideally, utilizing existing unit tests to confirm that the behavior remains un-

changed should suffice. However, refactoring tasks may sometimes be inter-

32

leaved with other activities, leading to potential alterations in the software’s

behavior. In such cases, existing unit tests may not capture these changes

if they haven’t been revalidated to reflect the newly introduced functionality.

Upon analyzing these discussions, reviewers have proposed several recommend-

ations. They suggest incorporating unit tests before initiating the refactoring

process to instill greater confidence that the code remains intact. Additionally,

they recommend adding test cases when refactored code results in decreased

test coverage, such as when extracting new methods. Furthermore, when de-

velopers submit their changes for review, including the results of running the

tests can enhance transparency and provide assurance to reviewers. To encom-

pass these scenarios, we have identified the following sub-categories under the

Testing category: additional test suite, auto-test fix, and test file refactoring.

Our taxonomy builds on and extends existing refactoring taxonomies by fo-

cusing specifically on the unique characteristics of the ‘Refactor’ branch. Unlike

general refactoring taxonomies that encompass a wide range of refactoring activ-

ities across various contexts, our taxonomy is designed to capture specific prac-

tices and challenges and review dynamics within a dedicated refactoring branch.

This taxonomy can be compared with existing ones in the literature, such as

those proposed by Pantiuchina et al. [46, 85] and Paixao et al. [43], which clas-

sify refactorings based on reasons for refactoring rejection and rationale in the

GitHub pull requests and Gerrit, respectively. For example, previous studies

found that lack of clear goals and poorly documented proposals are the main

causes of rejection after code review, while design improvement and test quality

are key motivations. Also, they found that non-explicit or mixed intent refact-

orings tend to have high interactivity during the review, observations we shared

when creating the taxonomy in the ‘Refactor’ branch.

Unlike traditional taxonomies, ours is tailored to the unique context of the

‘Refactor’ branch, reflecting its specific practices and priorities. By focusing

on the ‘Refactor’ branch, the taxonomy provides a more granular and context-

specific understanding of refactoring practices. It offers insights into how branch

isolation and focused collaboration can streamline the review process, reduce

33

review time, and improve code quality. These findings are particularly valuable

for organizations considering the adoption of dedicated refactoring branches as

a strategy to enhance their development workflows. The outcome of the survey

with a senior developer shows the existence of these types of review criteria in

the ‘Refactor’ branch.

Furthermore, we conducted a manual analysis to identify the factors that

contribute to successful reviews in the refactoring branch compared to other

branches. These insights were drawn from developer documentation and our

observations of best practices. The following best practices were identified:

Focused Scope of Changes. Reviews in the ‘Refactor’ branch often involve

changes that are narrowly focused on improving code structure without alter-

ing functionality. This clear separation may help reviewers quickly grasp the

intent and impact of the changes. For example, in review ID 4058 (see Figure

6), the developer focused solely on renaming variables to improve code readab-

ility. The review had only two inline comments and was approved within 2.41,

demonstrating the efficiency of focused changes.

Clear and Concise Documentation. Reviews in the ‘Refactor’ branch often

include clear, concise documentation explaining the purpose of the refactoring,

the specific changes made, or the expected benefits. For instance, in review ID

1733 (see Figure 6), the developer provided a clear explanation of the purpose

of refactoring, and a succinct summary of the changes, which led to a smooth

review process with minimal comments.

Consistency with Coding Standards. Reviews in the ‘Refactor’ branch

often adhere to Gerrit Qt’s established coding standards and guidelines, making

it easier for reviewers to evaluate changes without debating style or format

issues. For example, we noticed in review ID 4058 (see Figure 6) that the

developer used Qt specific naming convention when naming classes.

34

Summary. Discussions within the ‘Refactor’ branch primarily revolve

around topics related to code quality, objectives and testing. In particular,

developers actively engage in conversations to ensure that the refactoring

efforts adhere to the coding standards, discussions center on clarifying

the objectives of the refactoring task, and there is a focus on rigorous

testing practices to verify that the refactoring changes do not introduce

new issues and that the improved code performs as expected.

Table 5: A taxonomy of the refactoring review criteria from ‘Refactor’ branch in modern code

review.

C
a
te
g
o
ry

S
u
b
-c
a
te
g
o
ry

E
x
a
m
p
le

(E
x
c
e
rp

ts
fr
o
m

a
re

la
te
d

re
fa
c
to

ri
n
g
re

v
ie
w
)

Q
u
a
li
ty

C
o
d
e
sm

el
l

“Q
t
C
re
a
to
r:

re
m
o
ve

d
ea
d
pa
tc
h
in
g
co
d
e
W
e
a
re

u
si
n
g
a
V
C
S
.
N
o
n
ee
d
to

ke
ep

d
ea
d
co
d
e.
”

In
te
rn
al

q
u
al
it
y
at
tr
ib
u
te

“C
h
ec
ki
n
g
in

te
xt

co
n
tr
o
l
a
n
d
ed
it
o
r
cl
a
ss
es

w
h
a
t
o
f
th
o
se

re
la
te
d
a
tt
ri
bu
te
s
h
a
ve

ex
a
ct
ly

ch
a
n
ge
d
be
fo
re

ca
ll
in
g
th
e
u
pd
a
te

in
cr
ea
se
s
co
d
e
co
m
p
le
xi
ty

u
n
n
ec
es
sa
ri
ly

fo
r
a
li
tt
le

be
n
efi

t.
”

E
x
te
rn
al

q
u
al
it
y
at
tr
ib
u
te

“T
h
is

is
si
m
p
le
r
th
a
n

th
e
ex
is
ti
n
g
te
xt
u
re

ca
ch
e
in

Q
tO

pe
n
G
L
,
a
s
it

o
n
ly

se
rv
es

th
e
G
L

pa
in
t
en

gi
n
e.

T
h
er
e’
s
o
n
e
pe
r
co
n
te
xt

gr
o
u
p
,
to

si
m
p
li
fy

th
e
d
es
ig
n
a
n
d
to

p
re
ve
n
t
pe
rf
o
rm

a
n
ce

d
eg
ra
d
a
ti
o
n
s.
”

R
e
fa
c
to

ri
n
g

S
im

p
li
fy
in
g
m
et
h
o
d
ca
ll
s

“R
ef
a
ct
o
r
Q
M
o
u
se
E
ve
n
t
to

co
n
ta
in

th
e
po
si
ti
o
n

in
si
d
e
th
e
w
in
d
o
w
.

R
en

a
m
e
th
e
d
ef
a
u
lt

a
cc
es
so
rs

fo
r

po
si
ti
o
n
s
to

lo
ca
lP
o
s,

w
in
d
o
w
P
o
s
a
n
d
sc
re
en

P
o
s,

to
be

ex
p
li
ci
t
a
bo
u
t
th
ei
r
u
se
.”

M
et
h
o
d
co
m
p
os
it
io
n

“A
d
d
in
g
1
0
s
d
el
a
y
a
ft
er

ex
tr
a
ct
in
g
7
z.
”

F
ea
tu
re

m
ov
e

“A
d
d
Q
tU

iT
oo
ls

a
n
d
u
il
ib

T
h
is

co
d
e
u
se
d
to

li
ve

in
qt
ba
se
.

It
d
oe
sn
’t

be
lo
n
g
th
er
e
h
o
w
ev
er

a
n
d
si
n
ce

th
er
e
a
re

n
o
d
ep
en

d
en

ci
es

in
qt
ba
se

le
ft
th
a
t
re
qu
ir
e
it
m
o
ve

it
h
er
e.

T
h
is

si
gn

ifi
ca
n
tl
y
si
m
p
li
fi
es

th
e
bu
il
d

sy
st
em

w
it
h
re
ga
rd
s
to

th
e
co
d
e
in

u
il
ib
.”

O
b
je
c
ti
v
e

F
ea
tu
re

su
p
p
or
t

“R
es
to
re

fe
a
tu
re

co
m
pa
ti
bi
li
ty

w
it
h
Q
P
ri
n
te
r
in

Q
T
ex
tD

oc
u
m
en

t:
:p
ri
n
t
A
d
d
a
m
a
rg
in

m
et
h
od

to
Q
P
a
ge
d
-

P
a
in
tD

ev
ic
e.
”

B
u
g
fi
x
in
g

“fi
x
fo
u
n
d
Im

po
rt
a
n
tU

pd
a
te

a
n
d
re
n
a
m
e
it
to

es
se
n
ti
a
l
-
th
er
e
w
a
s
bu
g
th
a
t
u
n
se
le
ct
ed

u
pd
a
te
s
a
re

re
m
o
ve
d

in
ca
se

th
er
e
is

a
n
im

po
rt
a
n
t
u
pd
a
te

-
to

a
vo
id

th
e
er
ro
r
w
it
h
o
ld

in
st
a
ll
a
ti
o
n
w
e
a
re

re
n
a
m
in
g
Im

po
rt
a
n
t

ta
g
to

E
ss
en

ti
a
l
w
h
ic
h
m
ea
n
s
th
e
sa
m
e
bu
t
o
n
ly

w
o
rk
s
w
it
h
th
is

fi
x.
”

C
le
an

u
p

“R
ef
a
ct
o
r
th
e
in
p
u
t
fr
a
m
ew

o
rk

R
es
u
lt
s
o
f
th
e
o
n
go
in
g
w
o
rk
sh
o
p
in

O
sl
o
:
Q
In
p
u
tP

a
n
el

w
il
l
be

th
e
a
p
-

p
li
ca
ti
o
n
fa
ci
n
g
in
te
rf
a
ce

fo
r
co
n
tr
o
ll
in
g
th
e
in
p
u
t
co
n
te
xt

a
s
w
el
l
a
s
qu
er
yi
n
g
th
in
gs

li
ke

th
e
po
si
ti
o
n
o
f

th
e
vi
rt
u
a
l
ke
yb
oa
rd
.
Q
In
p
u
tC

o
n
te
xt

is
si
gn

ifi
ca
n
tl
y
cl
ea
n
ed

u
p
a
n
d
o
n
ly

th
er
e
a
s
a
co
m
pa
ti
bi
li
ty

A
P
I
fo
r

ex
is
ti
n
g
co
d
e.
”

T
e
st
in
g

A
d
d
it
io
n
al

te
st

su
it
e

“
A
d
d
ed

n
ew

Q
O
pe
n
G
L
P
a
in
tD

ev
ic
e
te
st

ca
se

in
ts
t
Q
O
pe
n
G
L
.”

A
u
to
-t
es
t
fi
x

“F
ix
ed

a
u
to
-t
es
t
fa
il
u
re

in
ts
t
Q
O
pe
n
G
L
.
Q
O
pe
n
G
L
F
ra
m
eb
u
ff
er
O
bj
ec
t:
:h
ei
gh
t(
)
w
a
s
re
tu
rn
in
g
th
e
w
id
th
.”

T
es
t
fi
le

re
fa
ct
or
in
g

“M
o
ve

te
st
s
to

m
o
re

lo
gi
ca
l
po
si
ti
o
n
s.

B
ef
o
re
,
a
ll
th
e
a
u
to

te
st
s
w
er
e
ju
m
bl
ed

to
ge
th
er

in
a
h
u
ge

m
es
s
in

te
st
s/
a
u
to
,
n
o
w
th
ey

a
re

o
rg
a
n
iz
ed

a
ft
er

w
h
ic
h
m
od
u
le
/
su
bm

od
u
le
/
cl
a
ss

th
ey

be
lo
n
g
to
.
I
h
a
ve

a
ls
o
st
a
rt
ed

se
pa
ra
ti
n
g
o
u
t
u
n
it
te
st
s
fr
o
m

in
te
gr
a
ti
o
n
te
st
s.
”

35

6. Implications

6.1. Implications for Practitioners

Establishing continuous improvement culture for refactoring-related

reviews. Our RQ1 findings show that developers are more inclined to accept re-

factoring changes quickly in the refactoring branch compared to the refactoring

changes in other branches or to the non-refactoring changes. To emphasize the

value of refactoring changes, managers can cultivate a culture by prioritizing

continuous improvement and investing in refactoring. Therefore, establishing

guidelines for submitting refactoring changes for review can be beneficial. For

instance, refactoring branches should involve smaller, focused changes aimed at

improving specific areas of the code. Moreover, these branches should emphasize

the improvement of software quality, aligning with the shared goal among de-

velopers. It is essential for refactoring branches to clearly document the primary

goals of the proposed changes. Additionally, thorough code reviews and testing

should be conducted to ensure adherence to best practices and to prevent the

introduction of regressions or breaking existing functionality. In summary, the

recommended checklists are as follows:

Guidelines for Submitting Refactoring Changes to the ‘Refactor’ Branch

□ Nature of Changes:

✓ Are the changes primarily focused on improving the structure, read-

ability, or maintainability of the code without altering its external

behavior?

✓ Do the changes involve renaming variables, methods, or classes to

improve clarity?

✓ Are the changes aimed at reducing technical debt by simplifying com-

plex code or removing redundancies?

□ Scope of Changes:

36

✓ Do the changes impact multiple files or modules, indicating a broader

structural improvement?

✓ Are the changes part of a planned refactoring effort as outlined in

the project’s roadmap or guidelines?

□ Documentation and Communication:

✓ Have you documented the intent, instruction, impact, and scope of

the refactoring changes in the commit message or accompanying doc-

umentation?

✓ Have you communicated with the team about the planned refactoring

and received approval to proceed with the changes?

□ Testing and Validation:

✓ Have you ensured that all existing tests pass after the refactoring

changes?

✓ Have you added or updated tests to cover the refactored code, ensur-

ing no functionality is broken?

□ Review Process:

✓ Have you considered the feedback from previous refactoring reviews

and incorporated best practices into your changes?

Guidelines for Submitting Changes to the Main Branch

□ Functional Changes:

✓ Are the changes introducing new features, fixing bugs, or modifying

the external behavior of the application?

✓ Do the changes involve implementing new functionality or altering

existing functionality to meet new requirements?

□ Isolated Updates:

37

✓ Are the changes isolated to a single file or a small set of related files?

✓ Do the changes address a specific issue or feature request without

requiring broader structural modifications?

By following these checklists, developers can make informed decisions about

where to submit their changes, ensuring that the refactoring branch is used

appropriately for structural improvements while functional changes are directed

to the main branch. We believe this approach can enhance the clarity and

effectiveness of the development process, benefiting both individual developers

and the overall project. It is worth noting that this checklist has been validated

by an external developer for its relevance and completeness. However, we plan

to apply this checklist in practice to further assess its applicability and impact

in real-world scenarios.

Establishing guidelines for refactoring-related reviews. Our tax-

onomy shows that reviewing refactoring goes beyond improving the code struc-

ture. To improve the practice of reviewing refactored code, and contribute to

the quality of reviewing code in general, managers can collaboratively work with

developers to establish customized guidelines for reviewing refactoring changes

which could establish beneficial and long-lasting habits or themes to accelerate

the process of reviewing refactoring. Additionally, since our RQ4 findings show

that testing is one of the topics discussed by developers when reviewing refact-

oring changes, it is recommended to utilize continuous integration to keep the

testing suite in sync with the code base during and after refactoring.

6.2. Implications for Researchers

Understanding how refactoring changes in the ‘Refactor’ branch

tend to be reviewed. From RQ1, we observe that they refactoring changes

in the ‘Refactor’ branch are completed in a shorter timeframe compared to

changes from other branches and non-refactoring changes. Researchers should

further investigate the underlying reasons why refactoring changes in the ‘Re-

factor’ branch tend to be reviewed more efficiently compared to changes from

38

other branches. Understanding the factors contributing to this efficiency, such

as branch isolation, developer expertise, or collaboration dynamics, can provide

valuable information on optimizing code review processes and enhancing soft-

ware quality in development environments where refactoring is a common prac-

tice. Furthermore, exploring the impact of streamlined refactoring review prac-

tices on code quality, developer productivity, and overall project success could

offer practical guidance for software development teams aiming to improve their

refactoring workflows.

Supporting for the refactoring of non-source code artifacts. From

RQ4, we discover that refactoring operations are not limited to source code

files. Artifacts such as databases and log files are also susceptible to refactoring.

Similarly, we also observed discussions about refactoring test files. While it can

be argued that test suites are source code files, recent studies [46, 66] show that

the types of refactoring operations applied to test files are frequently different

from those applied to production files. Hence, future research on refactoring

is encouraged to introduce refactoring mechanisms and techniques exclusively

geared to refactoring non source code artifact types and test suites.

6.3. Implications for Tool Builders

Developing next generation refactoring-related code review tools.

Finding that reviewing refactoring changes from other branches takes longer

than non-refactoring changes reaffirms the necessity of developing accurate and

efficient tools and techniques that can assist developers in the review process in

the presence of refactorings. Refactoring toolset should be treated in the same

way as CI/CD tool set and integrated into the tool-chain. Researchers could

use our findings with other empirical investigations of refactoring to define,

validate, and develop a scheme to build automated assistance for reviewing

refactoring considering the refactoring review criteria as review code becomes

an easier process if the code review dashboard augmented with the factors to

offer suggestions to better document the review.

Furthermore, to accelerate the code review process and limit having a back-

39

and-forth discussion for clarity on the problem faced by the developer, tool

builders can develop bots for the integration, testing, and management categor-

ies. Additionally, it would be interesting to use a popular and widely adopted

quality framework, e.g., Quality Gate of SonarQube [86], as part of the quality

verification process by embedding its results in the code review. This might

facilitate convincing the reviewer about the impact and the correctness of the

performed refactoring.

7. Threats To Validity

In this section, we describe potential threats to validity of our research

method, and the actions we took to mitigate them.

Internal Validity. Concerning the identification of refactoring-related code

review, we select reviews from a dedicated ‘Refactor’ branch. As for the other

group of refactoring reviews, we analyze reviews with the keyword ‘refactor* ’ in

their title and description. Such selection criteria may have resulted in missing

refactoring-related reviews, and there is the possibility that we may have ex-

cluded synonymous terms/phrases. However, even though this approach reduces

the number of reviews in our dataset, it also decreases the false positiveness of

our selection. While our data collection may result in missing some reviews,

our approach ensures that we analyze reviews that are explicitly geared toward

refactoring. In other words, these are reviews where developers were explicitly

documenting a refactoring action and they wanted it to be reviewed. Addition-

ally, after performing the manual inspection on review discussions, we realized

that refactoring is heavily emphasized in discussions that start with a title or a

description containing the keyword ‘refactor* ’. Yet, this does not prevent other

discussions from bringing refactoring into the picture, and these will be missed

by our selection (i.e., false negatives). Hence, we excluded potential refactoring

synonymous terms/phrases when selecting non-refactoring reviews. We opted

for such picky selection to only consider discussions when code authors expli-

citly wanted their refactored code to be reviewed, and so reviewers eventually

40

propose a refactoring-aware feedback, which is what we are aiming for in this

study. Therefore, it is interesting to consider scenarios where reviewers have

raised concerns about refactoring a code change that was not intended to be as-

sociated with the ‘Refactor’ branch. Since refactoring can easily be interleaved

with other functional changes, it would be interesting to extract scenarios where

reviewers thought it was misused. The study can also help developers better

understand not only how to refactor their code, but also how to document it

properly for easier review.

Furthermore, we focus on the code review activity that is reported by the

tool-based code review process, i.e., Gerrit, of the systems studied due to the

fact that other communication media (e.g., in-person discussion [22], a group

IRC [87], or a mailing list [88]) do not have explicit links to code changes and

recovering these links is a daunting task [55, 89].

Construct Validity. About the representativeness and the correctness of

our refactoring review criteria, we derive these criteria from a manual analysis

of refactoring-related reviews. This approach may not cover the whole spectrum

of all the review criteria done with refactoring in mind. Additionally, to avoid

personal bias during the manual analysis, each step in the manual analysis was

conducted twice, and the results were always cross-validated. Another poten-

tial threat to validity relates to refactoring reviews. Since refactorings could

interleave with other changes [90] (i.e., developers performed changes together

with refactorings), we cannot claim that the selected refactoring reviews are

exclusively related to refactoring. However, during our qualitative analysis, we

identified this activity as one of the challenges that contributed to slowing down

the review process from other branches.

External Validity. We focus our study on one open-source system due to

the low number of systems that satisfied our eligibility criteria (see Section 4).

Therefore, our results may not be generalized to all other open-source systems

or commercially developed projects. However, the goal of this paper is not to

build a theory that applies to all systems, but rather to show that refactoring

can have an impact on code review process. Another potential threat relates to

41

the proposed taxonomy. Our taxonomy may not generalize to other open source

or commercial projects since the refactoring review criteria may be different for

another set of projects (e.g., outside the Qt community). Consequently, we

cannot claim that the results of refactoring review criteria (see Figure 7) can be

generalized to other software systems where the need for improving the design

might be less important.

Conclusion Validity. To compare the two groups of code review requests,

we used appropriate statistical procedures with p-value and effect size measures

to test the significance of the differences and their magnitude. A statistical

test was implemented to measure the significance of the observed differences

between group values. This test makes no assumption that the data are normally

distributed. Also, it assumes the independence of the groups under comparison.

We cannot verify whether code review requests are completely independent, as

some can be re-opened, or one large code change can be treated using several

requests. To mitigate this, we verified all the reviews we sampled for the test.

8. Conclusion

Understanding the practice of refactoring code review holds significant im-

portance for both the research community and industry. Despite the widespread

adoption of modern code review practices in open-source and industrial projects,

the correlation between code review and refactoring practices in the ‘Refactor’

branch remains largely unexplored. In our study, we conducted a comprehensive

quantitative and qualitative analysis to investigate the review criteria discussed

by the developers during the review of refactorings. Our findings highlight sev-

eral key points: refactoring changes in the ‘Refactor’ branch are completed in a

shorter timeframe compared to changes from other branches and non-refactoring

changes; documentation of developer intent within the ‘Refactor’ branch is lim-

ited in comparison to other branches; and developers rely on a specific set of

criteria to guide their decisions regarding the acceptance or rejection of submit-

ted refactoring changes.

42

For future work, we plan on conducting a structured survey with software

developers from both open-source and industry. The survey will explore their

general and specific review criteria when performing refactoring activities in

code review. This survey will complement and validate our current study to

provide the software engineering community with a more comprehensive view of

refactoring practices in the context of modern code review. Another interesting

research direction is to link refactoring-related reviews to refactoring detection

tools such as Refactoring Miner [17] or RefDiff [91] to better understand the

impact of these reviews on refactoring types specifically.

Declaration of generative AI and AI-assisted technologies in the writ-

ing process.

During the preparation of this work, the author used the ChatGPT Web

interface to improve the language and readability of some sections such as the

checklists. After using this tool, the author reviewed and edited the content as

needed and takes full responsibility for the content of the publication.

References

[1] C. Abid, V. Alizadeh, M. Kessentini, T. do Nascimento Ferreira, D. Dig, 30

years of software refactoring research:a systematic literature review (2020).

arXiv:2007.02194.

[2] A. Bacchelli, C. Bird, Expectations, outcomes, and challenges of modern

code review, in: International conference on software engineering, 2013, pp.

712–721.

[3] C. Sadowski, E. Söderberg, L. Church, M. Sipko, A. Bacchelli, Modern code

review: a case study at google, in: International Conference on Software

Engineering: Software Engineering in Practice, 2018, pp. 181–190.

[4] Y. Kashiwa, R. Nishikawa, Y. Kamei, M. Kondo, E. Shihab, R. Sato,

N. Ubayashi, An empirical study on self-admitted technical debt in modern

code review, Information and Software Technology 146 (2022) 106855.

43

http://arxiv.org/abs/2007.02194

[5] S. McIntosh, Y. Kamei, B. Adams, A. E. Hassan, An empirical study of

the impact of modern code review practices on software quality, Empirical

Software Engineering 21 (5) (2016) 2146–2189.

[6] X. Yang, R. G. Kula, N. Yoshida, H. Iida, Mining the modern code review

repositories: A dataset of people, process and product, in: Proceedings of

the 13th International Conference on Mining Software Repositories, 2016,

pp. 460–463.

[7] O. Hamdi, A. Ouni, E. A. AlOmar, M. O. Cinnéide, M. W. Mkaouer, An

empirical study on the impact of refactoring on quality metrics in android

applications (2021) 28–39.

[8] E. A. AlOmar, M. W. Mkaouer, A. Ouni, M. Kessentini, On the impact of

refactoring on the relationship between quality attributes and design met-

rics, in: 2019 ACM/IEEE International Symposium on Empirical Software

Engineering and Measurement (ESEM), IEEE, 2019, pp. 1–11.

[9] O. Hamdi, A. Ouni, M. Ó. Cinnéide, M. W. Mkaouer, A longitudinal study

of the impact of refactoring in android applications, Information and Soft-

ware Technology 140 (2021) 106699.

[10] A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, F. Palomba, An

exploratory study on the refactoring of unit test files in android applica-

tions, in: Proceedings of the IEEE/ACM 42nd International Conference on

Software Engineering Workshops, 2020, pp. 350–357.

[11] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,

O. Strollo, When does a refactoring induce bugs? an empirical study, in:

IEEE 12th International Working Conference on Source Code Analysis and

Manipulation, 2012, pp. 104–113.

[12] M. Di Penta, G. Bavota, F. Zampetti, On the relationship between refact-

oring actions and bugs: a differentiated replication, in: Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference

44

and Symposium on the Foundations of Software Engineering, 2020, pp.

556–567.

[13] E. A. AlOmar, H. AlRubaye, M. W. Mkaouer, A. Ouni, M. Kessentini,

Refactoring practices in the context of modern code review: An industrial

case study at xerox, in: 2021 IEEE/ACM 43rd International Conference

on Software Engineering: Software Engineering in Practice (ICSE-SEIP),

IEEE, 2021, pp. 348–357.

[14] N. Tsantalis, T. Chaikalis, A. Chatzigeorgiou, Jdeodorant: Identification

and removal of type-checking bad smells, in: 2008 12th European Confer-

ence on Software Maintenance and Reengineering, IEEE, 2008, pp. 329–331.

[15] W. Mkaouer, M. Kessentini, A. Shaout, P. Koligheu, S. Bechikh, K. Deb,

A. Ouni, Many-objective software remodularization using nsga-iii, ACM

Transactions on Software Engineering and Methodology (TOSEM) 24 (3)

(2015) 1–45.

[16] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, K. Deb, Multi-criteria

code refactoring using search-based software engineering: An industrial

case study, ACM Transactions on Software Engineering and Methodology

(TOSEM) 25 (3) (2016) 23.

[17] N. Tsantalis, M. Mansouri, L. Eshkevari, D. Mazinanian, D. Dig, Accurate

and efficient refactoring detection in commit history, in: 2018 IEEE/ACM

40th International Conference on Software Engineering (ICSE), IEEE,

2018, pp. 483–494.

[18] https://codereview.qt-project.org/c/qt/qtbase/+/4058.

[19] https://codereview.qt-project.org/c/qt/qtbase/+/215219.

[20] E. A. AlOmar, M. Chouchen, M. W. Mkaouer, A. Ouni, Code review prac-

tices for refactoring changes: An empirical study on openstack, in: Proceed-

ings of the 19th international conference on mining software repositories,

2022, pp. 689–701.

45

https://codereview.qt-project.org/c/qt/qtbase/+/4058
https://codereview.qt-project.org/c/qt/qtbase/+/215219

[21] https://smilevo.github.io/self-affirmed-refactoring/.

[22] M. Beller, A. Bacchelli, A. Zaidman, E. Juergens, Modern code reviews

in open-source projects: Which problems do they fix?, in: Proceedings

of the 11th working conference on mining software repositories, 2014, pp.

202–211.

[23] L. G. Votta Jr, Does every inspection need a meeting?, in: Proceedings of

the 1st ACM SIGSOFT Symposium on Foundations of Software Engineer-

ing, 1993, pp. 107–114.

[24] P. C. Rigby, C. Bird, Convergent contemporary software peer review prac-

tices, in: Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ACM, 2013, pp. 202–212.

[25] S. McIntosh, Y. Kamei, B. Adams, A. E. Hassan, The impact of code

review coverage and code review participation on software quality: A case

study of the qt, vtk, and itk projects, in: Working Conference on Mining

Software Repositories, 2014, pp. 192–201.

[26] P. Thongtanunam, X. Yang, N. Yoshida, R. G. Kula, A. E. C. Cruz, K. Fuji-

wara, H. Iida, Reda: A web-based visualization tool for analyzing modern

code review dataset, in: 2014 IEEE International Conference on Software

Maintenance and Evolution, IEEE, 2014, pp. 605–608.

[27] R. G. Kula, A. E. C. Cruz, N. Yoshida, K. Hamasaki, K. Fujiwara, X. Yang,

H. Iida, Using profiling metrics to categorise peer review types in the an-

droid project, in: 2012 IEEE 23rd International Symposium on Software

Reliability Engineering Workshops, IEEE, 2012, pp. 146–151.

[28] X. Ge, S. Sarkar, E. Murphy-Hill, Towards refactoring-aware code review,

in: International Workshop on Cooperative and Human Aspects of Software

Engineering, 2014, pp. 99–102.

46

https://smilevo.github.io/self-affirmed-refactoring/

[29] X. Ge, S. Sarkar, J. Witschey, E. Murphy-Hill, Refactoring-aware code

review, in: IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), 2017, pp. 71–79.

[30] R. Morales, S. McIntosh, F. Khomh, Do code review practices impact

design quality? a case study of the qt, vtk, and itk projects, in: Inter-

national Conference on Software Analysis, Evolution, and Reengineering

(SANER), 2015, pp. 171–180.

[31] M. Barnett, C. Bird, J. Brunet, S. K. Lahiri, Helping developers help them-

selves: Automatic decomposition of code review changesets, in: Interna-

tional Conference on Software Engineering-Volume 1, 2015, pp. 134–144.

[32] Y. Tao, S. Kim, Partitioning composite code changes to facilitate code

review, in: Working Conference on Mining Software Repositories, 2015,

pp. 180–190.

[33] T. Zhang, M. Song, J. Pinedo, M. Kim, Interactive code review for system-

atic changes, in: International Conference on Software Engineering-Volume

1, 2015, pp. 111–122.

[34] E. L. Alves, M. Song, T. Massoni, P. D. Machado, M. Kim, Refactor-

ing inspection support for manual refactoring edits, IEEE Transactions on

Software Engineering 44 (4) (2017) 365–383.

[35] A. Peruma, S. Simmons, E. A. AlOmar, C. D. Newman, M. W. Mkaouer,

A. Ouni, How do i refactor this? an empirical study on refactoring trends

and topics in stack overflow, Empirical Software Engineering 27 (1) (2022)

1–43.

[36] Y. Tao, Y. Dang, T. Xie, D. Zhang, S. Kim, How do software engineers

understand code changes?: an exploratory study in industry, in: ACM

SIGSOFT 20th International Symposium on the Foundations of Software

Engineering, 2012, p. 51.

47

[37] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, J. Czerwonka, Code review-

ing in the trenches: Challenges and best practices, IEEE Software 35 (4)

(2017) 34–42.

[38] B. Guo, M. Song, Interactively decomposing composite changes to support

code review and regression testing, in: Annual Computer Software and

Applications Conference (COMPSAC), Vol. 1, 2017, pp. 118–127.

[39] A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, Contextualizing

rename decisions using refactorings and commit messages, in: 2019 19th

International Working Conference on Source Code Analysis and Manipu-

lation (SCAM), IEEE, 2019, pp. 74–85.

[40] E. L. Alves, M. Song, M. Kim, Refdistiller: a refactoring aware code re-

view tool for inspecting manual refactoring edits, in: ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, 2014, pp.

751–754.

[41] F. Coelho, T. Massoni, E. L. Alves, Refactoring-aware code review: a sys-

tematic mapping study, in: International Workshop on Refactoring, 2019,

pp. 63–66.

[42] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, A. Bacchelli, Inform-

ation needs in contemporary code review, Proceedings of the ACM on

Human-Computer Interaction 2 (CSCW) (2018) 135.

[43] M. Paixão, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke,

E. Arvonio, Behind the intents: An in-depth empirical study on software

refactoring in modern code review, in: Proceedings of the 17th Interna-

tional Conference on Mining Software Repositories, 2020, pp. 125–136.

[44] A. Uchôa, C. Barbosa, W. Oizumi, P. Bleńılio, R. Lima, A. Garcia,

C. Bezerra, How does modern code review impact software design degrada-

tion? an in-depth empirical study, in: 2020 IEEE International Conference

48

on Software Maintenance and Evolution (ICSME), IEEE, 2020, pp. 511–

522.

[45] A. Uchôa, C. Barbosa, D. Coutinho, W. Oizumi, W. K. Assunçao, S. R.

Vergilio, J. A. Pereira, A. Oliveira, A. Garcia, Predicting design impactful

changes in modern code review: A large-scale empirical study, in: 2021

IEEE/ACM 18th International Conference on Mining Software Repositor-

ies (MSR), IEEE, 2021, pp. 471–482.

[46] J. Pantiuchina, F. Zampetti, S. Scalabrino, V. Piantadosi, R. Oliveto,

G. Bavota, M. D. Penta, Why developers refactor source code: A mining-

based study, ACM Transactions on Software Engineering and Methodology

(TOSEM) 29 (4) (2020) 1–30.

[47] F. Coelho, N. Tsantalis, T. Massoni, E. L. Alves, An empirical study on

refactoring-inducing pull requests, in: Proceedings of the 15th ACM/IEEE

International Symposium on Empirical Software Engineering and Measure-

ment (ESEM), 2021, pp. 1–12.

[48] A. Brito, A. Hora, M. T. Valente, Refactoring graphs: Assessing refactoring

over time, arXiv preprint arXiv:2003.04666.

[49] D. Silva, J. Silva, G. J. D. S. Santos, R. Terra, M. T. O. Valente, Refdiff

2.0: A multi-language refactoring detection tool, IEEE Transactions on

Software Engineering.

[50] Z. Kurbatova, V. Kovalenko, I. Savu, B. Brockbernd, D. Andreescu,

M. Anton, R. Venediktov, E. Tikhomirova, T. Bryksin, Refactorinsight:

Enhancing ide representation of changes in git with refactorings informa-

tion, arXiv preprint arXiv:2108.11202.

[51] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,

K.-i. Matsumoto, Who should review my code? a file location-based code-

reviewer recommendation approach for modern code review, in: 2015 IEEE

49

22nd International Conference on Software Analysis, Evolution, and Reen-

gineering (SANER), IEEE, 2015, pp. 141–150.

[52] X. Zhang, Y. Chen, Y. Gu, W. Zou, X. Xie, X. Jia, J. Xuan, How do

multiple pull requests change the same code: A study of competing pull

requests in github, in: 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME), IEEE, 2018, pp. 228–239.

[53] P. Runeson, M. Höst, Guidelines for conducting and reporting case study

research in software engineering, Empirical software engineering 14 (2)

(2009) 131–164.

[54] P. Thongtanunam, S. McIntosh, A. E. Hassan, H. Iida, Investigating code

review practices in defective files: An empirical study of the qt system, in:

2015 IEEE/ACM 12th Working Conference on Mining Software Reposit-

ories, IEEE, 2015, pp. 168–179.

[55] P. Thongtanunam, S. McIntosh, A. E. Hassan, H. Iida, Revisiting code

ownership and its relationship with software quality in the scope of mod-

ern code review, in: Proceedings of the 38th international conference on

software engineering, 2016, pp. 1039–1050.

[56] P. Thongtanunam, A. E. Hassan, Review dynamics and their impact on

software quality, IEEE Transactions on Software Engineering.

[57] A. Ouni, R. G. Kula, K. Inoue, Search-based peer reviewers recommend-

ation in modern code review, in: 2016 IEEE International Conference on

Software Maintenance and Evolution (ICSME), IEEE, 2016, pp. 367–377.

[58] Y. Fan, X. Xia, D. Lo, S. Li, Early prediction of merged code changes to

prioritize reviewing tasks, Empirical Software Engineering 23 (6) (2018)

3346–3393.

[59] M. Chouchen, A. Ouni, M. W. Mkaouer, R. G. Kula, K. Inoue, Whoreview:

A multi-objective search-based approach for code reviewers recommenda-

tion in modern code review, Applied Soft Computing 100 (2021) 106908.

50

[60] S. Kim, E. J. Whitehead, Y. Zhang, Classifying software changes: Clean or

buggy?, IEEE Transactions on software engineering 34 (2) (2008) 181–196.

[61] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,

N. Ubayashi, A large-scale empirical study of just-in-time quality assurance,

IEEE Transactions on Software Engineering 39 (6) (2012) 757–773.

[62] A. Mockus, L. G. Votta, Identifying reasons for software changes using

historic databases., in: icsm, 2000, pp. 120–130.

[63] A. E. Hassan, Automated classification of change messages in open source

projects, in: Proceedings of the 2008 ACM symposium on Applied com-

puting, 2008, pp. 837–841.

[64] J. Ratzinger, T. Sigmund, H. C. Gall, On the relation of refactorings and

software defect prediction, in: Proceedings of the 2008 International Work-

ing Conference on Mining Software Repositories, MSR ’08, ACM, New

York, NY, USA, 2008, pp. 35–38. doi:10.1145/1370750.1370759.

URL http://doi.acm.org/10.1145/1370750.1370759

[65] E. A. AlOmar, M. W. Mkaouer, A. Ouni, Can refactoring be self-affirmed?

an exploratory study on how developers document their refactoring activ-

ities in commit messages, in: International Workshop on Refactoring-

accepted. IEEE, 2019.

[66] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. Newman, A. Ouni, M. Kes-

sentini, How we refactor and how we document it? on the use of supervised

machine learning algorithms to classify refactoring documentation, Expert

Systems with Applications 167 (2021) 114176.

[67] K. Stroggylos, D. Spinellis, Refactoring–does it improve software quality?,

in: Fifth International Workshop on Software Quality (WoSQ’07: ICSE

Workshops 2007), IEEE, 2007, pp. 10–10.

[68] Y. Tang, R. Khatchadourian, M. Bagherzadeh, R. Singh, A. Stewart,

A. Raja, An empirical study of refactorings and technical debt in machine

51

http://doi.acm.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759
http://dx.doi.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759

learning systems, in: 2021 IEEE/ACM 43rd International Conference on

Software Engineering (ICSE), IEEE, 2021, pp. 238–250.

[69] E. A. AlOmar, J. Liu, K. Addo, M. W. Mkaouer, C. Newman, A. Ouni,

Z. Yu, On the documentation of refactoring types, Automated Software

Engineering 29 (1) (2022) 1–40.

[70] D. Zhang, B. Li, Z. Li, P. Liang, A preliminary investigation of self-

admitted refactorings in open source software, 2018. doi:10.18293/

SEKE2018-081.

[71] D. Taeger, S. Kuhnt, Statistical hypothesis testing with SAS and R, John

Wiley & Sons, 2014.

[72] W. J. Conover, Practical nonparametric statistics, Vol. 350, John Wiley &

Sons, 1998.

[73] N. Cliff, Dominance statistics: Ordinal analyses to answer ordinal ques-

tions, Psychological Bulletin 114 (3) (1993) 494.

[74] J. Romano, J. Kromrey, J. Coraggio, J. Skowronek, Appropriate statistics

for ordinal level data, in: Proceedings of the Annual Meeting of the Florida

Association of Institutional Research, 2006, pp. 1–3.

[75] C. Wissler, The spearman correlation formula, Science 22 (558) (1905)

309–311.

[76] D. S. Cruzes, T. Dyba, Recommended steps for thematic synthesis in soft-

ware engineering, in: 2011 international symposium on empirical software

engineering and measurement, IEEE, 2011, pp. 275–284.

[77] D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of

github contributors, in: Proceedings of the 2016 24th ACM SIGSOFT In-

ternational Symposium on Foundations of Software Engineering, FSE 2016,

ACM, New York, NY, USA, 2016, pp. 858–870. doi:10.1145/2950290.

52

http://dx.doi.org/10.18293/SEKE2018-081
http://dx.doi.org/10.18293/SEKE2018-081
http://doi.acm.org/10.1145/2950290.2950305
http://doi.acm.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305

2950305.

URL http://doi.acm.org/10.1145/2950290.2950305

[78] L. Pascarella, F.-X. Geiger, F. Palomba, D. Di Nucci, I. Malavolta, A. Bac-

chelli, Self-reported activities of android developers, in: 2018 IEEE/ACM

5th International Conference on Mobile Software Engineering and Systems

(MOBILESoft), IEEE, 2018, pp. 144–155.

[79] E. Doğan, E. Tüzün, Towards a taxonomy of code review smells, Informa-

tion and Software Technology 142 (2022) 106737.

[80] K. L. Clarkson, P. W. Shor, Applications of random sampling in compu-

tational geometry, ii, Discrete & Computational Geometry 4 (5) (1989)

387–421.

[81] P. Hegedűs, I. Kádár, R. Ferenc, T. Gyimóthy, Empirical evaluation of

software maintainability based on a manually validated refactoring dataset,

Information and Software Technology 95 (2018) 313–327.

[82] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, M. Harman, The impact

of code review on architectural changes, IEEE Transactions on Software

Engineering.

[83] M. Fowler, K. Beck, J. Brant, W. Opdyke, d. Roberts, Refactoring: Im-

proving the Design of Existing Code, Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1999.

URL http://dl.acm.org/citation.cfm?id=311424

[84] E. A. AlOmar, A. Peruma, M. W. Mkaouer, C. D. Newman, A. Ouni,

An exploratory study on refactoring documentation in issues handling, in:

Proceedings of the 19th International Conference on Mining Software Re-

positories, 2022, pp. 107–111.

[85] J. Pantiuchina, B. Lin, F. Zampetti, M. Di Penta, M. Lanza, G. Ba-

vota, Why do developers reject refactorings in open-source projects?, ACM

53

http://dx.doi.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
http://doi.acm.org/10.1145/2950290.2950305
http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424
http://dl.acm.org/citation.cfm?id=311424

Transactions on Software Engineering and Methodology (TOSEM) 31 (2)

(2021) 1–23.

[86] O. Gaudin, Continuous Inspection A Paradigm Shift in Software Quality

Management, 3rd Edition, Vol. 4 of 10, SonarSource, 2013.

[87] E. Shihab, Z. M. Jiang, A. E. Hassan, Studying the use of developer irc

meetings in open source projects, in: 2009 IEEE International Conference

on Software Maintenance, IEEE, 2009, pp. 147–156.

[88] P. C. Rigby, M.-A. Storey, Understanding broadcast based peer review on

open source software projects, in: 2011 33rd International Conference on

Software Engineering (ICSE), IEEE, 2011, pp. 541–550.

[89] A. Bacchelli, M. Lanza, R. Robbes, Linking e-mails and source code arti-

facts, in: Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 1, 2010, pp. 375–384.

[90] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we

know it, IEEE Transactions on Software Engineering 38 (1) (2012) 5–18.

doi:10.1109/TSE.2011.41.

[91] D. Silva, M. T. Valente, Refdiff: detecting refactorings in version histories,

in: 2017 IEEE/ACM 14th International Conference on Mining Software

Repositories (MSR), IEEE, 2017, pp. 269–279.

54

http://dx.doi.org/10.1109/TSE.2011.41

	1 Introduction
	2 Background
	3 Related Work
	4 Study Design
	4.1 Data Collection
	4.1.1 Studied Systems
	4.1.2 Mining Code Review Data

	4.2 Data Preparation
	4.3 Data Analysis
	4.3.1 Quantitative data analysis.
	4.3.2 Qualitative data analysis.

	5 Results and Discussion
	5.1 How do refactoring reviews compare to non-refactoring reviews in terms of code review efforts?
	5.2 What textual patterns do developers use to describe their refactoring needs in the `Refactor’ branch?
	5.3 What quality attributes do developers consider when describing refactoring in the `Refactor’ branch?
	5.4 What topics do developers discuss when reviewing refactoring tasks?

	6 Implications
	6.1 Implications for Practitioners
	6.2 Implications for Researchers
	6.3 Implications for Tool Builders

	7 Threats To Validity
	8 Conclusion

