
Towards Better Understanding Developer Perception of
Refactoring

Eman Abdullah AlOmar
Rochester Institute of Technology, NY, USA

eman.alomar@mail.rit.edu

Abstract—Refactoring is a critical task in software mainte-
nance. It is typically performed to enforce best design practices,
or to cope with design defects. Research in refactoring has been
driven by the need to improve system structures. However, recent
studies have shown that developers may incorporate refactoring
strategies in other development-related activities that go beyond
improving the design. Unfortunately, these studies are limited
to developer interviews and a reduced set of projects. In this
context, we aim at exploring how developers document their
refactoring activities during the software life cycle, we call
such activity Self-Affirmed Refactoring (SAR), by understanding
developers perception of refactorings so that we can bridge the
gap between refactoring and automation in general. We aim in
more accurately mimicking the human decision making when
recommending better software refactoring and remodularization.

I. INTRODUCTION

The success of a software system depends on its ability
to retain a high quality of design in the face of continuous
change. However, managing the growth of the software while
continuously developing its functionalities is challenging, and
can account for up to 75% of the total development cost. One
key practice to cope with this challenge is refactoring. Refac-
toring is the art of remodeling the software design without
altering its functionalities [7], [9]. It was popularized by [9],
who identified 72 refactoring types and provided examples of
how to apply them in his catalog.

Refactoring is the art of improving the quality of soft-
ware design without altering its behavior. With the rise of
agile methodologies that encourage developers to interleave
refactoring within other development activities, and with the
incorporation of refactoring operations in modern Integrated
Development Environments (IDEs), there is a lot of growing
research to better understand how developers practically refac-
tor their codebases [17], [18], [20]. Thus, several studies focus
on detecting refactoring operations, performed by developers,
by mining their commit changes and extracting the refactoring
history [12], [24], [26]. These refactoring detectors rely mainly
on analyzing code changes to identify refactorings strategies,
previously performed by developers in various development
contexts.

In order to learn from these refactoring strategies, it is
essential to also understand the developer’s rationale and intent
behind applying them, i.e., the context in which the refactoring
operations were executed. Existing studies on understanding
developers perception of refactorings mainly rely on develop-
ers surveys and formal interviews [10], [13]. As the existing

refactoring detectors offer an abundant source of commits
containing refactoring operations, this paper aims at exploring
how developers document their refactoring activities during
the software life-cycle.

Inspired by various studies in analyzing the developer’s
internal documentation to extract their perception of their own
code, e.g., self-admitted technical debt [6], [21], we text-
mine the developer’s messages in refactoring-related commits
to detect any potentially relevant information regarding the
applied refactorings. Indeed, commit messages represent an
atomic documentation of a code change, written by the change
author, and thus represents a reliable and rich source of
information to describe their intention behind the performed
changes. Therefore, we conduct this empirical study to identify
how developers describe their refactoring activities. Then we
extract the rationale behind the applied refactorings, e.g., fixing
code smells or improving specific quality attributes.

The purpose of this thesis research is to extend further our
basic definition of refactoring and to challenge the existing
case studies; advocating a need for research on refactorings
that takes into account the fact that refactorings are not
always solicited in the same context of improving the internal
design by fixing smells. Our goal is to extract the developer’s
perception of refactoring by mining its refactoring operations,
and positioning their context of usage within the development
process, in order to better simulate the human decision making
when recommending refactorings to improve software design.
To achieve this goal, this thesis proposes the following con-
tributions:

Research Thrust 1. Mining-to-define the developer’s
taxonomy of refactoring documentation. As a first contri-
bution, we extract the refactoring knowledge, by mining code
instances containing refactoring related operations. Then, we
define the taxonomy associated with how developers docu-
ment their code optimization. This first research thrust has
resulted in our first contribution which was recently accepted
in the 3rd International Workshop on Refactoring, co-located
with the International Conference on Software Engineering
(IWoR@ICSE) [3]. It was also awarded the best paper award,
and the best presentation award.

Research Thrust 2. Mining developer perception of
refactoring. In this phase, we analyze the contexts in which
developers are performing refactorings to better understand
how developers interleave code optimization with other devel-
opments tasks. As we build towards answering this research



thrust, our second contribution was recently accepted in the
ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM) [4].

Research Thrust 3. Supporting the automation of refac-
toring recommendation. By capturing real-world scenarios of
refactorings when extracting refactoring patterns (RT 1), and
understanding how they fit in software development contexts
(RT 2) we can automate the refactoring process, not only
by using state-of-art features (improving design metrics and
quality attributes) but also with contextual features which
better simulate the human behavior when facing software
decay.

In this paper, we enumerate the research questions we
are planning on addressing as part of exploring our research
thrusts. Then we showcase the preliminary findings of our
first contribution related to defining a taxonomy for refactoring
documentation.

II. LITERATURE REVIEW

A number of studies have focused recently on the iden-
tification and detection of refactoring activities during the
software life-cycle. One of the common approaches to identify
refactoring activities is to analyze the commit messages in
versioned repositories. Stroggylos & Spinellis [27] opted for
searching words stemming from the verb “refactor” such
as “refactoring” or “refactored” to identify refactoring-related
commits. Ratzinger et al. [22], [23] also used a similar
keyword-based approach to detect refactoring activity between
a pair of program versions to identify whether a transformation
contains refactoring. The authors identified refactorings based
on a set of keywords detected in commit messages.

Later, Murphy-Hill et al. [18] replicated Ratzinger’s ex-
periment in two open source systems using Ratzinger’s 13
keywords. They conclude that commit messages in version
histories are unreliable indicators of refactoring activities.
This is due to the fact that developers do not consistently
report/document refactoring activities in the commit messages.
In another study, Soares et al. [26] compared and evaluated
three approaches, namely, manual analysis, commit message
(Ratzinger et al.’s approach [22], [23]), and dynamic analysis
(SafeRefactor approach [25]) to analyze refactorings in open
source repositories, in terms of behavioral preservation. The
authors found that manual analysis achieves the best results in
this comparative study and is considered as the most reliable
approach in detecting behavior-preserving transformations.

In another study, Kim et al. [13] surveyed 328 professional
software engineers at Microsoft to investigate when and how
they do refactoring. They first identified refactoring branches
and then asked developers about the keywords that are usually
used to mark refactoring events in change commit messages.
When surveyed, the developers mentioned several keywords
to mark refactoring activities. Kim et al. matched the top ten
refactoring-related keywords identified from the survey against
the commit messages to identify refactoring commits from
version histories. Using this approach, they found 94.29% of

commits do not have any of the keywords, and only 5.76% of
commits included refactoring-related keywords.

More recently, Zhang et al. [29] performed a preliminary
investigation of Self-Admitted Refactoring (SAR) in three
open source systems. They first extracted 22 keywords from
a list of refactoring operations defined in Martin Fowler’s
book [9] as a basis for SAR identification. After identifying
candidate SARs, they used Ref-Finder [12] to validate whether
refactorings have been applied. In their work, they used code
smells to assess the impact of SAR on the structural quality of
the source code. Their main findings are the following (1) SAR
tend to enhance the software quality although there is a small
percentage of SAR that have introduced code smells, and (2)
the most frequent code smells that are introduced or reduced
depend highly on the nature of the studied projects. They
concluded that SAR is a signal that helps to find refactoring
events, but it does not guarantee the application of refactorings.

III. RESEARCH PLAN

A. Research agenda

Figure 1 depicts the overview of the thesis. We want to
follow the following research plan:

Fig. 1. Thesis Overview

1) Refactoring Documentation: In this phase, we analyze
the developer’s internal documentations of refactorings to in-
troduce refactoring patterns. We answer the following research
questions:

RQ1. What patterns do developers use to describe their
refactoring activities? Since there is no consensus on how
to formally document the act of refactoring code, we mine
in this research question, patterns, using which developers
have described their refactoring activities. We explore 322,479
commit messages, belonging to a large variety of projects. The
outcome of this research question enumerates the most popular
text patterns used in the analyzed commit messages.

RQ2. What are the quality issues that drive developers to
refactor? Various studies have explored the bad programming
practices that trigger refactoring and the potential quality
attributes that are optimized when restructuring the code.
In this research question, we investigate whether developers



explicitly mention the purpose of their refactoring activity, e.g.,
improving structural metrics of fixing code smells.

RQ3. Do commits containing the label “Refactor” indicate
more refactoring activity than those without the label? We
revisit the hypothesis raised by Murphy-Hill et al. [17] about
whether developers use a specific pattern, i.e., “refactor”
when describing their refactoring activities. We quantify the
messages with the label “refactor” and without to compare
between them.

2) Refactoring Documentation Assessment: In this phase:
we investigated the impact of SAR on quality by focusing
on the main internal quality attributes and using well-known
quality metrics reported in the literature. We specifically
answer the following research question:

RQ4. Do the developer perception of quality improvement
align with the quantitative assessment of code quality? Our
main goal is to investigate whether the developer perception of
quality improvement (as expected by developers) aligns with
the real quality improvement (as assessed by quality metrics).

3) Refactoring Developers Perception & Practices: In this
phase, we extend further our basic definition of refactoring by
identifying the developers motivation behind every application
of a refactoring targeting an answer to the following research
questions:

RQ5. What is the developer’s purpose of the applied refac-
torings? We determine the motivation of the developer through
the classification of the commit containing the refactoring
operations. It identifies the type of development tasks that
refactorings were interleaved with, e.g., updating a feature,
or debugging.

RQ6. Is there a subset of developers, within the development
team, who are responsible for refactoring the code? This
research question challenges the scalability of several papers
that have performed developer interviews and demonstrated
that only a subset of developers perform major refactoring
activities. In our study, we verify whether the task of refactor-
ing is equally distributed among all developers or if it is the
responsibility of a subset of developers.

RQ7. Are there more refactoring activities before project
releases than after? Refactoring is known to be solicited
around major releases, yet there is not enough information
on the nature of activities applied. To answer this research
question, we monitor the refactoring activities for a time
window centered by the release date, then we compare the
frequency of refactoring before and after the release of the
new version.

4) Refactoring Automation: In this phase, we plan on
proposing an automated strategy to remodularize software
packages by recommending the right package for a given class.
We want also to make sure that our recommendation provides
the optimum modular design of the software by improving the
dominant modularization forces (i.e, cohesion and coupling).
Therefore, we are seeking for an answer to the following
research questions:

RQ8. How to recommend the right package for a given
class? We plan to use a set of features and metrics, use

learning to rank technique to rank the selected features, and
apply clustering techniques to group similar packages together.

RQ9. What is the impact of package-level refactorings
on software quality? We plan to assess the impact of four
refactorings applied to code elements with higher granularity
level, i.e., move, merge, split, and rename, on software quality.

B. Methodology

1) Data Collection & Refactoring Detection: To perform
our experimental study, we utilize an existing benchmark of
GitHub repositories by Allamanis [2]. To extract the entire
refactoring history for each project, we use the Refactoring
Miner tool, developed by Tsantalis et al. [28]. Refactoring
Miner is designed to analyze code changes in git repositories
to detect applied refactoring. Our choice to use Refactoring
Miner is justified by the fact that it achieved accurate re-
sults in detecting refactorings compared to the state-of-the-
art available tools, with a precision of 98% and recall of 87%
[24], [28]. In this phase, Refactoring Miner detected 1,208,970
refactoring operations in 3,795 projects.

2) Self-Affirmed Refactoring Analysis: After extracting all
refactoring commit messages detected by Refactoring Miner,
our next step consists of analyzing each of the commit
messages. As for pattern identification, we were inspired by
the manual analysis of Potdar and Shihab [21] when analyzing
comments containing self-admitted technical debt. Similarly,
since commit messages are written in natural language and
we need to understand how developers express refactoring, we
manually analyzed commit messages by reading through each
message to identify SAR patterns. We then extracted these
commit comments to specific patterns. To avoid redundancy
of any kind of patterns, we only considered one phrase if we
found different forms of patterns that have the same meaning.
This enables us to have a list of the most insightful and
unique patterns. It also helps in making more concise patterns
that are usable for readers. The manual analysis process took
approximately 7 days in total.

3) Selection of Quality Metrics: To set up a comprehensive
set of quality metrics, we first conducted a literature review on
existing and commonly above acknowledged software quality
metrics [5], [8], [11], [15], [16], [19]. Then, we checked if
the metrics assess several object-oriented design aspects in
order to map each metric to the appropriate internal quality
attributes. For example, the RFC (Response For Class) metric
is typically used to measure the coupling and complexity
quality attributes. Thereafter, we create a list of metrics and
associate each of the well-known metrics (e.g., CK suite [5]
and McCabe [16]) with common quality attributes. The pro-
cess left us with 19 object-oriented metrics. All metrics values
are automatically computed using the tool UNDERSTAND1, a
software quality assurance framework.

1https://scitools.com/



Start
Open Source
Java projects Clone repositories

Detect refactorings

Refactoring commits log

Extract commit
messages

Identify refactoring
patterns

Refactoring
patterns Stop

Fig. 2. Approach Overview.

C. Results

This section reports our experimental results described in
[3], [4]. The dataset of refactorings is available online2.

RQ1. What patterns do developers use to describe their
refactoring activities? To identify SAR patterns, we manually
inspect a subset of commit messages and categorize these
messages into lexically or semantically similar patterns. These
patterns are represented in the form of a keyword or phrase
that frequently occur in the comments of all refactoring-related
commits. The extraction of our approach has been carried
through few iterations. We start our first iteration by searching
for the term “refactor*”. In this iteration, we obtained 33,301
refactoring commit messages. Then, we started a manual
inspection of each commit message that is associated with
the term “refactor” to the set of patterns that are also used to
describe the refactoring activity. As developers may not always
use the term “refactor” explicitly to document their refactor-
ing activities in their commit messages. Thus, to alleviate this
issue, we reiterate again, using the extracted patterns in the
first iteration, while excluding the term “refactor”, to identify
additional SAR patterns. We kept iterating by extracting new
patterns while excluding the previously identified ones until we
are no longer able to find any relevant patterns. Our in-depth
inspection resulted into a list of 87 SAR patterns identified
across the considered projects.

RQ2. What are the quality issues that drive developers
to refactor? We identify and categorize SAR patterns used
to describe the motivation behind refactorings to three main
categories: (1) internal quality attributes, (2) external quality
attributes, and (3) code smells. We perform five sequential
steps to answer this research question. We start by collecting
software issues ,i.e., quality attributes and code smells reported
in the literature [1], [9], [14]. Then, we search for common
categories among the reported quality attributes and code
smells. The following step involves identifying categories
clustering quality attributes under the identified categories.
This process resulted in three different categories mentioned
above. For each of the collected quality attributes and code
smells, we search in our database for any potential refactoring
commit that contains any of the collected quality attributes
and code smells.

2https://smilevo.github.io/self-affirmed-refactoring/

RQ3. Do commits containing the label “Refactor” indicate
more refactoring activity than those without the label? In an
empirical context, we test Murphy-Hill et al.’s [17] hypothesis
mentioned above in two rounds. In the first round, we used
the keyword “refactor”, exactly as dictated by the authors.
Thereafter, we quantified the proportion of commits including
the searched label across all the considered projects in our
benchmark. In the second round, we re-tested the hypothesis
using the 87 SAR patterns we identified, i.e., we counted the
percentage of commits containing any of our SAR labels. The
result of the two rounds resides in a strict set of commits
containing the label refactor, which is included in a larger
set containing all patterns, and finally a remaining set of
commits which does not contain any patterns. For each of the
sets, we count the number of refactoring operations identified
in the commits. By comparing the different commits that
are labeled and unlabeled with SAR patterns, we observe a
significant number of labeled refactoring commits for each
refactoring operation supported by the tool Refactoring Miner.
This implies that there is a strong trend of developers in
using these phrases in refactoring commits. The results for
commits labeled and unlabeled “refactor” with engendering
an opposite observation, which corroborates the expected
outcome of Murphy-Hill et al.’s hypothesis. Thus, the use of
“refactor” is not a great indication of refactoring activities.
The difference between the two tests indicates the usefulness
of the list of SAR patterns that we identified.

RQ4. Do the developer perception of quality improvement
align with the quantitative assessment of code quality? A
variety of structural metrics can represent the internal quality
attributes considered in this study. Based on our empirical
investigation, for metrics that are associated with quality
attributes, there are different degrees of improvement and
degradation of software quality. Additionally, most of the
metrics that are mapped to the main quality attributes, i.e.,
cohesion, coupling, and complexity, do capture developer
intentions of quality improvement reported in the commit
messages. In contrast, there is also a case in which the
metrics do not capture quality improvement as perceived by
developers.

IV. CONCLUSION

In this paper, we explored how developers explicitly report
refactoring activities in the commit messages of versioned
repositories. We introduced 87 SAR patterns, which is an
indication of the developer-reported refactoring events in the
change messages, to capture developers refactoring taxonomy.
We progressed on this direction by assessing the impact of
SAR on quality and exploring several motivation behind refac-
torings that go beyond the traditional definition of refactorings.
Therefore, our next plan is mainly focused on automatically
remodularizing software packages while improving the domi-
nant modularization driving forces, and empirically assessing
the impact of package-level refactorings on quality.



V. ACKNOWLEDGMENTS

The author would like to thank her advisor Mohamed Wiem
Mkaouer for all the help and support received during the PhD.

REFERENCES

[1] J. Al Dallal and A. Abdin. Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review. IEEE Transactions on Software Engineering, 44(1):44–69, 2018.

[2] M. Allamanis and C. Sutton. Mining source code repositories at massive
scale using language modeling. In Proceedings of the 10th Working
Conference on Mining Software Repositories, pages 207–216. IEEE
Press, 2013.

[3] E. A. AlOmar, M. W. Mkaouer, and A. Ouni. Can refactoring be
self-affirmed? an exploratory study on how developers document their
refactoring activities in commit messages. In Proceedings of the 3nd
International Workshop on Refactoring. IEEE, 2019.

[4] E. A. AlOmar, M. W. Mkaouer, A. Ouni, and M. Kessentini. Do design
metrics capture developers perception of quality? an empirical study
on self-affirmed refactoring activities. In 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement
(ESEM). IEEE, 2019.

[5] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on software engineering, 20(6):476–493,
1994.

[6] E. da Silva Maldonado, E. Shihab, and N. Tsantalis. Using natural
language processing to automatically detect self-admitted technical debt.
IEEE Transactions on Software Engineering, 43(11):1044–1062, 2017.

[7] J. A. Dallal and A. Abdin. Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review. IEEE Transactions on Software Engineering, PP(99):1–1, 2017.

[8] G. Destefanis, S. Counsell, G. Concas, and R. Tonelli. Agile processes in
software engineering and extreme programming. chapter Software Met-
rics in Agile Software: An Empirical Study, pages 157–170. Springer-
Verlag, Berlin, Heidelberg, 2014.

[9] M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[10] X. Ge, Q. L. DuBose, and E. Murphy-Hill. Reconciling manual
and automatic refactoring. In Proceedings of the 34th International
Conference on Software Engineering, pages 211–221. IEEE Press, 2012.

[11] S. Henry and D. Kafura. Software structure metrics based on information
flow. IEEE transactions on Software Engineering, (5):510–518, 1981.

[12] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-finder: a
refactoring reconstruction tool based on logic query templates. In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pages 371–372. ACM, 2010.

[13] M. Kim, T. Zimmermann, and N. Nagappan. An empirical study of
refactoringchallenges and benefits at microsoft. IEEE Transactions on
Software Engineering, 40(7):633–649, 2014.

[14] M. Lanza and R. Marinescu. Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[15] M. Lorenz and J. Kidd. Object-oriented software metrics, volume 131.
Prentice Hall Englewood Cliffs, 1994.

[16] T. J. McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[17] E. Murphy-Hill, A. P. Black, D. Dig, and C. Parnin. Gathering
refactoring data: a comparison of four methods. In Proceedings of the
2nd Workshop on Refactoring Tools, page 7. ACM, 2008.

[18] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how
we know it. IEEE Transactions on Software Engineering, 38(1):5–18,
2012.

[19] B. A. Nejmeh. Npath: a measure of execution path complexity and its
applications. Communications of the ACM, 31(2):188–200, 1988.

[20] A. Peruma, M. W. Mkaouer, M. J. Decker, and C. D. Newman. An
empirical investigation of how and why developers rename identifiers.
In Proceedings of the 2nd International Workshop on Refactoring, pages
26–33. ACM, 2018.

[21] A. Potdar and E. Shihab. An exploratory study on self-admitted technical
debt. In Software Maintenance and Evolution (ICSME), 2014 IEEE
International Conference on, pages 91–100. IEEE, 2014.

[22] J. Ratzinger. sPACE: Software Project Assessment in the Course of
Evolution. PhD thesis, 2007.

[23] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings
and software defect prediction. In Proceedings of the 2008 International
Working Conference on Mining Software Repositories, MSR ’08, pages
35–38, New York, NY, USA, 2008. ACM.

[24] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions
of github contributors. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, pages
858–870. ACM, 2016.

[25] G. Soares, D. Cavalcanti, R. Gheyi, T. Massoni, D. Serey, and M. Corn-
lio. Saferefactor-tool for checking refactoring safety. 01 2009.

[26] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson. Comparing
approaches to analyze refactoring activity on software repositories.
Journal of Systems and Software, 86(4):1006–1022, 2013.

[27] K. Stroggylos and D. Spinellis. Refactoring–does it improve software
quality? In Software Quality, 2007. WoSQ’07: ICSE Workshops 2007.
Fifth International Workshop on, pages 10–10. IEEE, 2007.

[28] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig.
Accurate and efficient refactoring detection in commit history. 2018.

[29] D. Zhang, B. Li, Z. Li, and P. Liang. A preliminary investigation of
self-admitted refactorings in open source software. 07 2018.


