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Abstract—The paper presents the Source Code Analysis and
Lexical Annotation Runtime (SCALAR), a tool specialized for
mapping (annotating) source code identifier names to their
corresponding part-of-speech tag sequence (grammar pattern).
SCALAR’s internal model is trained using scikit-learn’s Gra-
dientBoostingClassifier in conjunction with a manually-curated
oracle of identifier names and their grammar patterns. This
specializes the tagger to recognize the unique structure of the
natural language used by developers to create all types of
identifiers (e.g., function names, variable names etc.). SCALAR’s
output is compared with a previous version of the tagger, as well
as a modern off-the-shelf part-of-speech tagger to show how it
improves upon other taggers’ output for annotating identifiers.
The code is available on Github1

Index Terms—Program comprehension, identifier naming,
part-of-speech tagging, natural language processing, software
maintenance, software evolution

I. INTRODUCTION

The identifiers developers create represent a significant
amount of the information other developers must use to
understand related code. Given that identifiers represent, on
average, 70% of the characters in a code base [1], and
developers spend more time reading code than writing [2],
[3], it is important for researchers to better understand of how
identifiers convey information, and how they can be improved
to increase developer reading efficiency. This problem is
complicated by the fact that there are multiple comprehension
styles [4], [5], and the influence of identifier naming at varying
levels of experience is currently understudied, especially in
education contexts [6], [7]. Further, while there are many
studies that correlate the influence of identifiers (and various
related characteristics) on comprehension [8]–[11], research
has not found formal rules or unification among the outcomes
of these studies due to the complexity of the problem, and the
need for further research.

1https://github.com/SCANL/scanl tagger

Thus, research is needed to improve identifier naming
practices. Many approaches try to improve identifiers through
predicting words that should appear in a name [12], [13] or
analyzing/normalizing identifiers [14]–[23] to understand how
well they fit within a coding context, or make them easier to
process. However, a significant challenge in identifier naming
research lies in measuring the semantics of identifier names,
then using that information to critique/generate better names.

Measurement of identifier name semantics requires mapping
between the terms and their meaning as an identifier (i.e., a
sequence of terms). The ability to do this in a formal way
allows us to recommend sequences of terms based on an un-
derstanding of the semantics they typically convey together. It
also allows us to determine when the terms used in a sequence
are inappropriate, since certain sequences are uncommon or
even known to be anti-patterns. This is a challenge, as there
are many ways to cluster identifiers using the terms used
to construct them. Prior research shows that using grammar
patterns to cluster/group identifiers with similar part-of-speech
(PoS) sequences is an effective way to study how different
types of identifiers convey meaning [24]–[26], and has the
advantage that every term that is part of a natural language can
be associated with a PoS tag. In addition, PoS tags are a known
and well-supported means to formally define the function of
a term within a sequence. Thus, we can group identifiers by
grammar patterns (i.e., their PoS sequence) to measure the
information they convey, and what patterns are most com-
monly used to convey different types of information. This is in
contrast, and potentially complementary, to other approaches
that cluster raw terms, or use vector representations.

Thus, we present SCALAR: A part-of-speech tagging ap-
proach specialized for source code identifiers. SCALAR is
explicitly designed to support the generation of grammar
pattern sequences to support future research and development
of techniques that leverage grammar patterns. The goal of this



TABLE I
PART-OF-SPEECH CATEGORIES IN DATASET AND SUPPORTED BY SCALAR

Abbreviation Expanded Form Examples

N noun stack, function, language

DT determiner the, this, that, these, those, which

CJ conjunction and, for, nor, but, or, yet, so

P preposition behind, in front of, at, under,
beside, above, beneath, despite

NPL noun plural strings, identifiers, classes

NM noun modifier
(noun adjunct, adjective)

employeeName, tokenParser,
dynamic

V verb run, execute, implement, develop

VM verb modifier (adverb) quickly, safely, eventually

PR pronoun she, he, her, him, it, we,
us, they, them, I, me, you

D digit 1, 2, 10, 4.12, 0xAF

PRE preamble* Gimp, GLEW, GL, G

paper is to show the effectiveness of SCALAR for generat-
ing grammar patterns. SCALAR can be used in the future
to improve techniques to analyze, recommend, and critique
identifiers, by generating grammar patterns that can be used
to understand identifier name meanings [24]–[27]. SCALAR is
still very much in development as we apply it in our research
and modify it to assist. However, it is a working tool that will
be useful for others in identifier-oriented work.

II. RELATED WORK

POSSE [19] and SWUM [28], and SCANL tagger [29] are
part-of-speech taggers created specifically to be run on soft-
ware identifiers; they are trained to deal with the specialized
context in which identifiers appear. Both POSSE and SWUM
take advantage of static analysis to provide annotations. For
example, they will look at the return type of a function to
determine whether the word set is a noun or a verb. Addi-
tionally, they are both aware of common naming structures
in identifier names. For example, methods are more likely to
contain a verb in certain positions within their name (e.g., at
the beginning) [19], [28]. They leverage this information to
help determine what POS to assign different words. Olney et
al. [30] compared taggers for accuracy on 200+ identifiers,
but only on Java method names. They found that SWUM
and POSSE were the most accurate taggers for source code
at the time of publication. Newman et al. [24] compared the
same taggers but on a larger dataset (1,335 identifiers) and five
identifier categories: function, class, attribute, parameter, and
declaration statement. They found that SWUM was the most
accurate overall, with an average accuracy around 59.4% at the
identifier level. Later, Newman et al. created a new tagger and
compared with SWUM, POSSE, and Stanford [31], finding
that their new tagger exceeded the others’ performance metrics
on identifier names [29].

TABLE II
EXAMPLES OF GRAMMAR PATTERNS

Identifier Example Grammar Pattern

action to index map N P NM N
as binary P N
time for each line N P DT N
server and port N CJ N
open if empty V CJ NM
adjust to camera V P N

III. METHODOLOGY

The core of SCALAR is a GradientBoostingClassifier that
is trained using the combination of two manually-curated data
sets of identifiers and their corresponding grammar patterns.
The first data set is called the General Grammar Dataset
(GGD). The second dataset is called the Closed Grammar
Dataset (CGD). The first dataset is used to train the first
iteration of SCALAR [29], while the second is created to
improve on the original: It underperformed on closed syntactic
categories such as preposition, conjunction, and determiner.

The GGD is made up of 1,335 identifiers from 5 contexts:
function, declaration, attribute, parameter, and class name. It
represents a 95 and 6 sample from a dataset of identifiers from
20 open source systems [29]. The CGD is made up of 1,275
identifiers, representing a 95 and 5 sample from a dataset of 30
systems validated similarly to prior work [29]. The difference
between these is that the CGD contains a higher population
of closed-category words, such as prepositions, conjunctions,
etc. We used srcML [32] to do all data collection and filtering.

We combine these datasets to construct the Training Dataset
(TD). This dataset contains a total of 1,335 + 1,275 = 2,610
identifiers. This translates to 7,173 rows, each row containing
one word from the identifiers in our dataset. As stated, we
train SCALAR using scikit-learn’s GradientBoostingClassifier
algorithm. The training is split set into train (70%, 5021
words), and test (30%, 2152 words) using a stratified, random
sample. We stratified on the ground-truth PoS annotation for
each word. We used stratified k-fold cross validation with k=10
for training to help improve the generality of SCALAR.

A number of features are used to help train the model. One
of the major differences between the prior Ensemble Tagger
[29] and SCALAR is that it significantly reduces its reliance on
external taggers, with NLTK [33] being the only other tagger
whose output SCALAR is trained on. Instead, this tagger relies
on word-embedding features and lexical features inspired by
our prior work on grammar patterns [24], [25]. This makes
SCALAR much faster than its predecessor and equally, or
more, accurate across the range of PoS categories. Due to
space limitations, we will not go into detail about every new
feature, but the strongest features in terms of their importance
metric are as follows:

1) NLTK POS. We use the NLTK part of speech tagger
as a feature due to its speed, and it provides an off-the-
shelf tagger perspective to SCALAR; it roots SCALAR



in traditional PoS tagging, allowing it to focus on
specializing the tags to the unique context of code.

2) Preposition Embeddings. We collect a list of common
prepositions (we reference word sources above the lists
in the code2), translate them into word embeddings, then
use an average, normalized vector of those embeddings
to determine whether a given word is close (in terms
of angles between vectors) to the general concept of a
preposition. We do the same with nouns and verbs to
create average noun/verb word embedding vectors.

3) Ratio of word position. The position of a word within
an identifier can provide valuable information about its
role. For example, words at the end of an identifier tend
to be nouns (i.e., head nouns); the word at the beginning
of a function identifier tends to be a verb. This feature
represents the ratio between given word’s position and
the length of the identifier that it is part of; it gives us
an idea of how ’far’ into an identifier a given word is.

Our tagset is specialized for identifiers found in code. This
tagset (shown in Table I) is first discussed in Newman et al.’s
original work on Grammar Patterns [24]. In this paper, New-
man et al. shows that identifiers follow unique grammatical
rules that are rarely in most natural human language text. Thus,
they argue that specialized taggers are necessary for identifiers.
Most of these tags are available and known to general PoS
tagging approaches. However, there are two tags in our set
that we must discuss, since their usage within identifiers is
part of what sets the natural language in code apart from
other natural language contexts, like newspapers. These are
Noun Modifiers (NM) [19], [24], [28] and Preambles (PRE)
[24], [28]. A Preamble is an abbreviation which does one of
the following:

1) Namespaces an identifier without augmenting the
reader’s understanding of its behavior (e.g., XML in
XML Reader is not a preamble)

2) Provides language-specific metadata about an identifier
(e.g., identifies pointers or member variables)

3) Highlights an identifier’s type. When a preamble is
highlighting an identifier’s type, the type’s inclusion
must not add any new information to the identifier name.

We give examples of each preamble type in the list. An
example of (1) can be found in the GIMP and GLEW open-
source projects, where GIMP and G are namespace preambles
to many variables. To discuss (2), we use Hungarian notation
[34]. Hungarian notation is when developers, for example, put
p in front of pointer variables or m in front of variables
that are members of a class; any Hungarian notation in an
identifier is considered a preamble. As an example of (3),
given the declaration float* fPtr, ‘f’ in ‘fPtr’ does not add
any information about the identifier’s role within the system,
but reminds the developer that it has a type ’float’; this is a
preamble. However, given an identifier char* sPtr, ‘s’ informs
the developer that this is a c-string as opposed to a pointer to
some other type of character array; ‘s’ is not considered a

2https://github.com/SCANL/scanl tagger/blob/master/feature generator.py

TABLE III
TEST SET METRICS PER TAGGER. EACH TAGGER WAS RUN ON THE SAME

TEST SET, AND METRICS WERE GATHERED FROM THEIR PER-WORD
PERFORMANCE.

Accuracy Balanced Accuracy Weighted
Recall

Weighted
Precision

Weighted
F1

Performance
(seconds)

SCALAR 0.8216 0.9160 0.8216 0.8245 0.8220 249.05
Ensemble 0.7124 0.8311 0.7124 0.7597 0.7235 1149.44
Flair 0.6087 0.7844 0.6087 0.7755 0.6497 807.03

preamble under this definition above. Intuitively, the reason
for identifying preambles in an identifier is because they do
not provide any information with respect to the identifier’s role
within the system’s domain. Instead, they provide one of the
types of information above.

Another tag to note in Table I is noun modifier (NM), which
is annotated on words that can be considered a pure adjective
or noun-adjunct. A noun-adjunct is a word that is typically a
noun but is being used as an adjective. An example of this
is the word bit in the identifier bitSet. In this case, bit is
a noun which describes the type of set, i.e., it is a set of
bits. So we consider it a noun-adjunct. These are found in
English (e.g., compound words), but generally not annotated
as their own individual PoS tag. Prior work argues for the use
of an individual tag for noun-adjuncts due to their ubiquity,
and special role, in source code identifiers [19], [24], [28].

Our evaluation is performed at the level of words and not
full identifiers, since annotating even one word incorrectly
within an identifier makes the annotation for the entire iden-
tifier incorrect. Word-level analysis is more granular and still
correlates with higher correctness over whole identifiers.

IV. EVALUATION

We perform a comparison of our PoS tagger against an off-
the-shelf part of speech tagger called Flair [35], as well as the
previous iteration of our tagger, the Ensemble Tagger, which
was shown to be the most accurate tagger compared to an off-
the-shelf tagger (Stanford [31]) and code-specialized taggers
(SWUM [28], Posse [19]) in prior work [29].

In order to compare with Flair [35], we need to trans-
late Flair’s output into our tagset; the translation between
SCALAR’s tagset and Flairs can be found in our Git repo
README3 where we show how to convert Penn Treebank to
our tagset. In mapping to Penn Treebank, some granularity
is lost. For example, we map most verb variation forms to
just verb. This decision is based on prior experience with
how verb variations are used in code, and is explained in
more detail in prior work [24]. In summary, reducing these
variations to verb simplifies the task of comparing, and many
of these variations have uses in code that cause them to behave
as non-verbs. For example, waitingList has a verb (waiting),
but it is being used as an noun modifier (describing the type
of list). Refer to [24] for more on that issue. Note that the
purpose of comparing to Flair is primarily to show that an
off-the-shelf PoS tagger cannot be readily used to annotate

3https://github.com/SCANL/scanl tagger



TABLE IV
CATEGORY-LEVEL METRICS FOR SCALAR BASED ON TEST SET PERFORMANCE

N
(Noun)

V
(Verb):

NM
(Noun Modifier):

D
(Digit):

P
(Preposition):

SCALAR Ensemble Flair SCALAR Ensemble Flair SCALAR Ensemble Flair SCALAR Ensemble Flair SCALAR Ensemble Flair
Precision: 0.798 0.7247 0.8854 0.7413 0.5473 0.5678 0.8075 0.8687 0.2516 0.957 0.9032 0.989 0.929 0.6129 0.8452
Recall: 0.8258 0.8209 0.5293 0.8514 0.6322 0.689 0.762 0.6326 0.6169 0.957 0.9438 0.8036 0.9351 0.6934 0.8506
F1 Score: 0.8116 0.7698 0.6625 0.7926 0.5867 0.6226 0.7841 0.7321 0.3574 0.957 0.9231 0.8867 0.932 0.6507 0.8479

VM
(Verb Modifier):

PRE
(Preamble)

DT
(Determiner):

NPL
(Noun Plural):

CJ
(Conjunction):

SCALAR Ensemble Flair SCALAR Ensemble Flair SCALAR Ensemble Flair SCALAR Ensemble Flair SCALAR Ensemble Flair
Precision: 0.75 0.2917 0.9 0.701 0.1856 0 0.9697 0.3434 0.4444 0.9204 0.8761 0.9646 0.8235 0.5294 0.625
Recall: 0.8182 0.3333 0.2609 0.7816 0.6 0 0.8421 0.7907 0.7857 0.8525 0.8319 0.7899 0.9333 0.5625 0.8333
F1 Score: 0.7826 0.3111 0.4045 0.7391 0.2835 0 0.9014 0.4789 0.5677 0.8851 0.8534 0.8685 0.875 0.5455 0.7143

with the specialized grammatical structure of identifiers. It is
not designed to recognize this specialized structure and, as a
result, it significantly under-performs versus its relatively high
accuracy on normal PoS tagging tasks. That is, even if we use
Flair’s tagset, it will still under-perform. This is clear from
the performance on the NM category in Table IV. Instead of
recognizing identifiers like bitSet as a noun-adjunct and a noun
(NM N), Flair recognizes it as two nouns (N N). This does
not correctly identify the relationship between these words.
For more information, and examples, refer to Newman et al.
[24], [25].

Compared with the Ensemble Tagger [29], its predecessor,
SCALAR is somewhat better in terms of accuracy, precision,
recall, and F1, but the true advantage that SCALAR has
above its predecessor is speed. SCALAR is much faster,
annotating all 2152 words in the test data set in 249.05
seconds, versus the 1149.44 seconds it took the Ensemble
Tagger. That’s 0.12 (249.05/2152) seconds per word versus
0.53 (1149.44/2152) seconds per word; SCALAR is 4.42 times
faster while remaining more effective than its predecessor.

In terms of overall performance, SCALAR generally out-
performs the other two taggers on identifiers in terms of our
performance metrics at a macroscopic level (Table III), and on
a per-category basis (Table IV).

V. THE APPLICATION

SCALAR runs as a Python Flask server using Waitress,
which opens the tagger to a user-defined address and port
and has the ability to handle simultaneous web requests from
users. This allows SCALAR to be available for an internal
group to use. HTTP requests are sent to SCALAR that contain
the identifier to process. SCALAR is very customizable, and
allows for user specified acceptable words and abbreviations.
Thus any domain-specific terms that do not have a standard
dictionary definition are manually flagged as valid words and
reported with corrected PoS information.

SCALAR returns JSON output with a list containing each
word found in an identifier. For each word, the output includes
PoS information and an additional tag indicating if it is a
standard dictionary word. Every time SCALAR encounters
an identifier for the first time, it caches the results of the
splitter and tagger. Every subsequent time SCALAR encoun-
ters the same identifier, it returns the cached information
on the identifier. This caching considerably speeds up the

splitting and tagging process, eliminating the need to process
an identifier which has been previously tagged. This provides
a significant performance increase for users who work in
code bases where the same identifiers are reused frequently.
Running the application on a couple systems we found that
the average time for a result of an identifier for the first time is
133.2 milliseconds and after caching (second time) the average
time for a result for the same identifier is 1.2 milliseconds.

Additionally, SCALAR saves the first time it encounters an
identifier, the most recent encounter, and the number of times
it encounters an identifier. This provides a log of identifiers and
is useful for researchers to better understand identifier uses.
The first and last encounters are saved as UNIX timestamps
and displayed in the JSON output.

SCALAR is available for download as a Docker image.
The Docker image automates the process of setting up an
environment in which SCALAR can run by including all
of the dependencies in a container. The Dockerfile included
with SCALAR downloads the required Python packages, word
embeddings, English word dictionary, and a list of allowable
domain-specific words and abbreviations. Downloading this
information from a separate source every time the docker
image is built allows the lists to be easily updated by rebuilding
the Docker image. Once these items are downloaded, the
docker image automatically runs the commands to train the
tagger and start the Python Flask server to receive requests.
The port on which SCALAR listens for requests is mapped
to port 8080 (a standard port for web traffic) on the machine
hosting the docker container. As requests are sent to SCALAR,
a JSON file containing the result cache is stored in a docker
volume. Storing the cached output allows for data to be
collected about the identifiers sent to the tagger during a
specific time frame.

VI. CONCLUSION

This paper introduces SCALAR, a part-of-speech tagger
for source code identifiers. It is trained using several features
involving word embeddings and an external part-of-speech tag-
ger output. It is designed to support the generation of grammar
patterns [24]–[26] for the purpose of analyzing, critiquing,
and improving identifier names. SCALAR is faster than its
predecessor, has similar performance, and out-performs other
PoS taggers on identifier names.
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