
On the Classification of Refactoring Code Reviews

Josef Sieber∗, Tim Schwirtlich∗, John Melwin Richard John Paul Raj∗, Yeshwant Santhanakrishnan
Premanand∗, Eman Abdullah AlOmar†, AbdElRahman Ahmed ElSaid‡, Mohamed Wiem Mkaouer§

∗ Rochester Institute of Technology, NY, USA
† Stevens Institute of Technology, NJ, USA

‡ University of North Carolina Wilmington, NC, USA
§ University of Michigan-Flint, MI, USA

Abstract—Code review has become standard practice in both
business and open source projects with the objective of improving
software quality, promoting knowledge exchange, and ensuring
adherence to coding rules and guidelines. It involves developer
discussions on potential refactoring operations before incorporat-
ing changes into the code base. Despite extensive investigations
into the general challenges, best practices, and socio-technical
elements of code review, there is limited understanding about
the assessment of refactoring and what developers prioritize
when examining refactored code. Therefore, our study aims
to comprehend the primary factors developers consider when
reviewing refactored code. To do so, we design a model that
takes as input a given code review conversation, and classifies it
into one refactoring category, e.g., quality, integration, testing, etc.
Multiple machine learning approaches are used and evaluated,
and the experimental results are examined qualitatively and
quantitatively at various granularities. Refactoring-related code
review category prediction is found to be possible with high
consistency, achieving an average scores of 0.8 on accepted
universal classification metrics, through the utilization of con-
temporary and traditional machine learning approaches. These
findings suggest that refactoring code review categorization can
be embedded in traditional workflows to increase efficiency and
decrease the time to production in software development.

Index Terms—code review, refactoring, quality

I. Introduction
Code reviews are essential for the modern software devel-

opment lifecycle. They are necessary to ensure that modified
code fulfills claims for correctness, integrity and compliance
with standards [1]–[6]. Software engineers perform code re-
views based on the modifications in a pull request made
by their peers. Reviewers evaluate not only whether the
committed code performs the task that it claims to, but also
how it interacts with the larger system as a whole. Bacchelli
et al. [7] performed an observational review of the practice
via survey, and determined that the outcome of this process
was the creation of awareness of system interactions along
with gaining more understanding of the code base as a whole.
This was confirmed by Macleod et al. [8], who performed
an observational study and interviewed multiple teams at
Microsoft, who concluded that code reviews serve the purpose
of finding defects, improving code, and increasing knowledge
transfer.

Although code reviews are a necessary part of the software
development life cycle, refactoring-related code reviews take
more time than other types of code reviews, and are linked to
longer times to deployment. AlOmar et al. [9] found in their

review of a large, active open-source project that refactoring-
related reviews had statistically significant differences in code
review metrics. These code reviews, on average, involved more
reviewers, more review comments, more inline comments,
more revisions, more file changes, lengthier review time,
lengthier discussions, lengthier descriptions, and more added
or deleted lines between revisions when compared to non-
refactoring-related code reviews.

As part of the examination of code reviews related to refac-
toring, AlOmar et al. [9] came up with six overarching review
criteria that reviewers use for reviews related to refactoring.
These categories were manually derived from a qualitative
analysis of review discussions tracked in the code review
tool. The results were verified in an industrial setting. The
categories are summarized in Table I.

As an illustrative example, here is a statement extracted
from a review where the reviewers point out the need to
refactor a given patch, as there are two classes (base and
common) that contain common instructions. According to the
refactoring taxonomy, this review belongs to the Code smell
subcategory, under the Quality category.

I do understand the desire to refactor some code to elimi-
nate duplicate code. The purpose of the common class was
to contain all of the duplicate code between the 2 drivers.
This seems like a half-baked approach to refactoring to
accomplish that goal, when the common class should have
been used as a new base (...).

Given how the review of refactoring-related changes takes
more effort and other types of changes [9], if developers are
aware of what category of refactoring their changes belong
to (i.e., Table I), they can properly document their changes
to facilitate their review, yet, there is no automated technique
that automatically classifies them. Therefore, the goal of this
paper is to develop an automated method to classify to a given
refactoring category, the refactoring-related code change de-
scriptions for review (referred to in the remainder of the paper
as refactoring reviews) based on their subject and description.
The predicted category shall indicate the criteria that will
be the focus of the discussion between the reviewer and the
developer when clarifying the correctness, quality, and purpose
of the code proposed code change. We hypothesize that such a
classification of reviews reveals which frequent criteria are the



TABLE I: Refactoring Review Categories, as defined by AlOmar et al. [9]

Category Description

Quality Reviewers enforce the adherence to coding convention, optimization of internal quality attributes, external quality attributes, the avoidance
of (i.e., code smell, resolution of technical debt, correctness of design pattern implementations), and lack of documentation

Refactoring Reviews discuss refactoring correctness, behavior preservation, refactoring co-occurrence with changes, and domain constraints
Objective Reviewers eventually ask to clearly document the goal, benefit, side effects, scope, feature-related, and bug fix-related activities to better

understand the rationale of the submitted code changes
Testing Refactoring reviews in which current testing did not adequately reflect the changed behavior after refactoring.
Integration Reviews highlighting how refactoring has complicated the merging process, or triggered configuration issues
Management Review took longer than normal due to a lack of reviewer attention, with little prompt discussion about proposed changes

focus of developers when reviewing refactorings. Additionally,
those indications could also be useful for developers in order
to preemptively examine their own code during the review
to fix critiques their peers may have. These two benefits
together should speed code review and help the smoothing
of refactoring reviews.

We tackle the problem of refactoring-related reviews, as a
multi-label classification problem, since reviews may belong
to more than one category, as we will detail later in Section
II-A. For embedding our input, we leverage fastText algorithm
[10] which is a text classification and representation learning
machine learning algorithm developed by Meta. It is an
extension of the traditional word2vec algorithm that represents
text documents using character n-grams (sub-words) as well
as word embeddings [11]. For training, the algorithm also
utilizes hierarchical softmax and negative sampling, making
it computationally efficient and scalable to large datasets. The
fastText algorithm can be used in a refactor-aware code review
process to automatically classify and group code changes
based on their underlying functionality or purpose.

Our experiments have designed multiple combinations of
models, leveraging mainly FastText as the main pre-trained
word vectorizer for the input descriptions, and Gradient
Boosted Machines as the main classifier. Our approach
achieved an efficient classification performance, reaching an
F-Measure of 80%, despite the class imbalance that exists
between the categories.

Our model is publicly available for researchers and prac-
titioners to replicate and extend1, and it has been designed
and implemented to be easily exported and deployed as a
standalone plugin for GitHub. Although recent advances in
natural language processing (NLP) and deep learning (DL)
have been using large language models, these solutions remain
limited in their input window [12], and newer models remain
less cost-effective for extensive usage [13].

II. Study Design
We now describe the experiments we conducted to analyze

the classification task of the refactoring review categories and
their feasibility.

A. Data
The data set consists of 3837 non-unique samples of refac-

toring reviews, each having subject, description, and a singular

1https://github.com/smilevo/RefactoringReviewClassification

Fig. 1: Approach Overview

ob
je

ct
iv

e

qu
al

ity

te
st

in
g

in
te

gr
at

io
n

re
fa

ct
or

in
g

0

200

400

600

800

1000

1200

1327

917

740

433

162

Label Counts

Fig. 2: Number of Reviews per Category

associated assigned category. This was reduced to 3579 values
after the removal of 258 duplicate samples. Cleaning the data
further required removing the subject from the description
column, where it was duplicated. The breakdown of label
counts is visualized in Figure 2.



B. Preprocessing

Preprocessing is a crucial step in Natural Language Process-
ing (NLP) tasks. Raw text data contains noise and irrelevant
information, making it challenging to extract meaningful in-
sights. Preprocessing involves applying a series of techniques
to clean and transform the raw text data into a format that
machine learning algorithms can analyze.

Preprocessing is necessary in NLP tasks for several reasons.
First, it helps reduce the data’s dimensionality by removing
stop words and non-relevant information. This, in turn, makes
it easier for machine learning algorithms to identify patterns
and extract meaningful features from the data.

Secondly, preprocessing helps to standardize the text data by
converting all characters to lowercase, removing punctuation,
and other non-alphabetic characters. This standardization en-
sures that the machine learning algorithms do not treat similar
words differently, which could result in inaccuracy.

Thirdly, preprocessing techniques such as stemming and
lemmatization help to reduce words to their base form. This
can help to group together words that have the same root
but different suffixes, which can improve the accuracy of the
machine learning models.

The code review natural language text fields required pre-
processing to be suitable for classification tasks. Although
the fastText algorithm is designed to accommodate generally
unprocessed data, it is advised by the algorithm developers
to still perform preprocessing on the input data [14]. For the
acquired data in this classification task, common preprocessing
steps referenced above were applied. Numbers, non-english
words, web addresses, and single characters were removed.
Casing was standardized across the input set. Description-less
code review requests were modified to have a description of
”No Description”. Finally, the words were lemmatized using
the WordNet Lemmatizer from NLTK, a leading platform for
natural language processing [15].

C. Classification Model

The fastText algorithm python API was utilized [10]. The
model was trained with a ”one-vs-all” loss function, creat-
ing independent binary classifiers for all labels. For direct
prediction, each label was predicted by each binary model,
resulting in a probability in [0,1] for each label. The learning
rate was scaled lower, to 0.05, as suggested in the official
documentation [16].

Given that each code review contains a subject text and a
description text of various lengths, it is important to calibrate
the model to give them appropriate weights. To do so, the out-
puts of fastText models trained on the subject and description
separately are concatenated and used to train gradient boosted
machines for binary prediction of each category. To examine
whether the added fields of subject and description length
positively contribute to model performance, the length of the
subject and description fields are engineered into variables
and concatenated with the input fields for gradient boosted
machines.

D. Modeling Approaches

As shown in Figure 1, from the different combinations of
approaches and models, we arrive at 3 final models alongside
the trivial approach, for the classification task that we evaluate.
For the trivial approach as a baseline comparison, we will
consider the fastText algorithm trained on the concatenated
subject and description in the data, as it is a proven standard
for classification tasks utilizing natural language. This will be
referred to as the trivial model moving forward. We compare
this approach to the averaged prediction of two fastText
models built separately on the subject and description, referred
to as the averaged model moving forward, the prediction of
a gradient boosted machine built off the outputs of the two
fastText models built separately on the subject and description,
referred to as the GBM model moving forward, and finally
to the prediction of a gradient boosted machine built off
the outputs of the two fastText model previously mentioned
along with added variables for the length of the subject and
description, referred to as the GBM-Length model moving
forward. When referenced together, the GBM and GBM-
Length models will be referred to as GBM variants.

E. Model Workflow

a) fastText Algorithm

The FastText algorithm is based on the bag-of-words ap-
proach, which represents each text sample as a bag of in-
dividual words. The bag of words approach works by first
tokenizing the input text into individual words or tokens, which
is in this case, done prior to modeling in the pre-processing
steps. Then, it creates a dictionary of all unique words that
appear in the text corpus. This dictionary is used as the basis
for feature extraction. Next, the approach creates a feature
vector for each piece of text by counting the occurrences
of each word in the dictionary. The resulting feature vector
represents the frequency of each word in the text and can be
used as input to a machine learning algorithm. In addition, the
fastText algorithm also uses subword information to capture
more abstract similarities between words. The algorithm learns
a set of n-gram character embeddings for all possible n-gram
lengths up to a maximum length k, which in this case is 1.
These embeddings are then used to represent the subwords of
words in the input text.

During training, the FastText algorithm learns a logistic
regression classifier using the word and subword embeddings
as input features, learning weights for each word and subword
individually. The classifier is trained using stochastic gradient
descent (SGD) with the negative log-likelihood loss function.
The log-likelihood is the logarithm of the likelihood function,
which is the probability of observing the data given the model
parameters. For optimization purposes in machine learning,
this is made negative to find a minima rather than a maxima.

Hierarchical softmax, based on Huffman Coding, is utilized
for label prediction. This algorithm represents the output labels
as a binary tree, such that each internal node corresponds
to a binary decision, and each leaf node corresponds to a



specific class. The probability of a particular class is computed
by traversing the tree from the root to the corresponding
leaf node, using the binary decisions at each internal node
to determine the path to follow. The hierarchical softmax
reduces the computational complexity of computing the output
layer of the logistic regression, by reducing the number of
computations required to compute the probability distribution
over the output classes. This is particularly useful in cases
where the number of output classes is very large.

b) Gradient Boosted Machine

Gradient Boosted Machines (GBMs) work by iteratively
improving an initial weak learner model by minimizing a loss
function with respect to the model parameters using gradient
descent optimization.

The weak learner used in the GBMs for this task is a
decision tree. In the first iteration of a GBM, a single decision
tree is trained on the training data. In each subsequent iteration,
a new decision tree is trained on the residuals of the previous
iteration’s predictions, with the goal of improving the overall
model performance. We chose to utilize 100 estimators per
GBM model.

The residual is the difference between the actual target
value and the predicted value of the previous iteration’s
model. By training a new model on the residuals from the
previous iteration, GBMs focus on the data points that were
not correctly predicted in the previous iteration, attempting to
correct the errors of the previous model.

To prevent overfitting, GBMs use regularization parameters.
The maximum depth of the decision trees was set at 2 after
experimentation, and the learning rate was set at 0.1, as rec-
ommended by the official documentation. The regularization
parameters control the contribution of each new tree to the
overall model. The learning rate determines how much each
new tree improves the previous model, and the maximum
depth controls the complexity of the decision trees.

The loss function utilized in the model selected was the
log-likelihood loss function, referenced in II-E0a.

The modeling of a GBM based on the output of the fastText
algorithm is an instance of stacking. Stacking is an ensemble
learning technique that combines the predictions of multiple
machine learning models to improve the overall accuracy
of the final prediction. In stacking, a meta-model is trained
on the outputs of several base models, rather than on the
original features.The stacking approach can help to improve
the accuracy of the final prediction by combining the strengths
of several models. By using a diverse set of base models,
the stacking approach can also help to reduce the risk of
overfitting, as each base model may capture different aspects
of the data. The stacking performed in this instance aims
to learn the weights of the subject and description fields
separately through the modeling.

F. Performance Metrics

We choose to utilize the metrics utilized by Herbold et
al. [17] in their fastText algorithm based research, with a

modification to suit our multi-label task. We measure the
performance of our classifiers on the overall dataset with
precision, recall, and F1 score.

To adjust for multi-label performance, true positives are
defined as all correctly identified labels across all categories,
rather than in only one binary category. False positives are
defined as all labels that are incorrectly applied through pre-
diction across all categories. Precision in this context measures
the percentage of labels that were correct among all labels
predicted. Recall in this context measures the percentage of
correctly predicted labels out of all true labels. F1 score is the
harmonic mean of recall and precision. Therefore, a high F1
score indicates that the model is effective at predicting labels
correctly and mostly predicts the correct labels.

For examination of individual label performance, accuracy
is examined along with the traditional precision, recall, and F1
score. The direct breakdown of true positives, true negatives,
false positives, and false negatives is directly available in
the relevant table. True positives are defined as the correctly
identified presence of a label on an example within one cat-
egory. False positives are defined as label incorrectly applied
to an example within a category. Precision in this context
measures the percentage of labels predicted correctly within
a category. Recall in this context measures the percentage
of labels that were correctly predicted out of the true labels
within a category. F1 score is the harmonic mean of recall and
precision within one category. A high F1 score indicates that
the model is effective at predicting the labels within a category
correctly and mostly predicts the presence of a label correctly
within a specific category.

III. Experiments
A. RQ1: What level of performance can be achieved

when using fastText based machine learning models to
predict associated categories for refactoring reviews?

TABLE II: 10-Fold Cross-Validated Metrics

Model Precision-Mean Recall-Mean F1 Score-Mean

Trivial 0.804 0.809 0.806
Averaged 0.802 0.802 0.801
GBM 0.806 0.797 0.801
GBM-Length 0.807 0.797 0.802

To address RQ1, the trivial, averaged, GBM, and GBM-
Length models were built and 10-fold cross-validated. The
selected performance metrics were averaged from the 10
iterations and presented in Table II. An inherent limitation
in these models is the random nature of their training. The
fastText features revealed through the Python API do not
include a random seed, and the actual training of fastText
models is randomized every run. The results discussed around
RQ1 are therefore non-deterministic, but generally accurate,
as verified by repeated runs of the cross-validation functions.

Referring to Table II, the performance level achievable
utilizing machine learning models built off the state-of-the-
art fastText algorithm in regards to precision exceeds 80%



among all classifiers. Recall performance is between 79% and
80%, with the trivial model performing the strongest. The F1
score exceeds 80% in all models, with the trivial model again
performing the strongest.

At this level of detail, the averaged model underperforms
the trivial model in all categories. This may be due to the
equal weights it inherently places on the separate subject and
description fields. The trivial, GBM, and GBM-Length models
do not have static weights applied to the input fields and
are allowed to learn the relationships during training. When
comparing the GBM and GBM-Length models to the trivial
and averaged, the slightly higher precision they afford comes
at the price of slightly lower recall. The labels they predict are
slightly more reliable, at the cost of less label predictions.

The addition of subject and description lengths to the
GBM-Length model did not increase any performance metric
meaningfully. The precision score for the GBM-Length model
is slightly higher, but within one standard deviation of the base
GBM model. From the similar performance, it appears that
the GBM model variants are provided with all necessary pre-
diction information from the outputs of the separate fastText
algorithms without the need for additional length information.

RQ1 Summary: Utilizing the fastText algorithm allows
us to predict the category of refactoring reviews, achieving
approximately 80% in common machine learning performance
metrics (Precision, Recall, and F1 Score). The trivial model
performs better than the averaged model. The GBM and GBM-
Length variants may have a slightly higher precision metric
than the trivial model in exchange for a slightly lower recall
metric.

TABLE III: Category Level Performance

Category Model FN FP TN TP Precision Recall F1

Integration Trivial 51.8 9.3 306.0 59.9 0.87 0.54 0.66
Integration Averaged 56.9 7.5 307.8 54.8 0.88 0.49 0.63
Integration GBM 38.2 17.7 297.6 73.5 0.81 0.66 0.72
Integration GBM-Length 37.2 18.0 297.3 74.5 0.81 0.67 0.73

Objective Trivial 17.1 58.9 36.9 314.1 0.84 0.95 0.89
Objective Averaged 8.0 74.8 21.0 323.3 0.81 0.98 0.89
Objective GBM 28.3 55.2 40.6 302.9 0.85 0.91 0.88
Objective GBM-Length 26.1 57.1 38.7 305.1 0.84 0.92 0.88

Quality Trivial 37.0 88.8 111.1 190.1 0.68 0.84 0.75
Quality Averaged 39.9 84.0 115.9 187.2 0.69 0.82 0.75
Quality GBM 54.1 70.6 129.3 173.0 0.71 0.76 0.74
Quality GBM-Length 53.8 71.8 128.1 173.3 0.71 0.76 0.73

Testing Trivial 32.6 16.9 222.3 155.2 0.90 0.83 0.86
Testing Averaged 36.3 12.8 226.4 151.5 0.92 0.81 0.86
Testing GBM 35.5 17.5 221.7 152.3 0.90 0.81 0.85
Testing GBM-Length 35.6 16.2 223.0 152.2 0.90 0.81 0.85

Refactoring Trivial 31.9 4.7 390.6 9.8 0.68 0.24 0.35
Refactoring Averaged 36.7 0.9 384.4 5.0 0.85 0.12 0.21
Refactoring GBM 28.3 11.3 374.0 13.4 0.54 0.32 0.40
Refactoring GBM-Length 29.1 11.0 374.3 12.6 0.54 0.30 0.39

B. RQ2: Do certain fastText model variations exhibit
better performance over specific categories, compared
to the other fastText models examined?

To address RQ2, the trivial, averaged, GBM, and GBM-
Length models built for RQ1 had their average true positive,
true negative, false positive, and false negative rates calculated

through a 10-fold average, in the same method as the perfor-
mance metrics calculated previously. The results are presented
in Table III.

Quality. The quality category label is applied when ”review-
ers enforce the adherence to coding convention, optimization
of internal quality attribute, external quality attribute, the
avoidance of (i.e., code smell, resolution of technical debt,
correctness of design pattern implementations), and lack of
documentation” [9]. False negatives from this category are
short and non-descriptive, providing little information for the
prediction task. The false positive also seems to not convey
much information, and prediction may have been swayed by
the keyword ”Selenium” occurring twice. The true labels of
the false negative were ”Objective” and ”Quality”. The true
labels of the false positive were ”Objective” and ”Testing”.
Within the quality category, the trivial and averaged models
predicted more positives, both true and false, when compared
to the GBM variants. This resulted in a slightly lower precision
rate along with an increased recall rate. The F1 score is higher
in the trivial and averaged models than the GBM variants, due
to the gains in recall being larger than the losses in precision.
The GBM variants were more effective in learning rules to
dictate when a refactoring review was not quality related when
compared to the trivial and averaged models, as indicated by
the lower false positive rate and higher true negative rate. All
models struggled when classifying this category, having the
second-lowest precision scores within the categories.

Integration. The integration category buckets together
refactoring reviews where ”refactoring has complicated the
merging process, or triggered configuration issues” [9]. The
false negatives (Integration cases missed) did contain the
keyword API, which often comes with the label, but the
subject and description are short and do not provide much
information, which would make the model have difficulty
predicting in this context. This false negative occurred with
the true labels ”Integration” and ”Objective” in the data set.
The false positive has the word API in it as well, which is
indicative of integration refactoring reviews. This false positive
occurred with the true labels ”Objective” and ”Testing” in the
data set.

Objective. The objective category reflects refactoring re-
views where ”reviewers eventually ask to clearly document
the goal, benefit, side effects, scope, feature-related, and bug
fix-related activities to better understand the rationale of the
submitted code changes” [9]. This task is abstract, being based
on the lack of certain information, rather than the presence
of information. False negatives belonging to this category,
appear to clearly document the purpose, and it would require
knowledge of the code base to determine it to be inadequate
objective documentation. The false positive appears to provide
no objective for the refactoring, and again would require
knowledge of the code base to determine it did not need
to provide objective. The false negative’s true labels were
”Objective” and ”Quality”. The false positive’s true label was
”Quality”.

Testing. The testing category is applicable to refactoring



reviews in which current testing did not adequately reflect the
changed behavior after refactoring. False negatives belonging
to this category do not discuss refactoring activities, although
they mention keywords like refactor in the subject. It only
refers to adding a test helper function, which would not qualify
as a refactoring in and of itself. It is difficult to deduce
the category of the false negative from only the subject and
description, and prediction may not have been possible on this
example. The false positive directly states in the subject and
description that the author refactors a test case, which causes
deduction of the ”Testing” category incorrectly. The true labels
of the false negative were ”Objective” and ”Testing”. The true
label of the false positive was ”Quality”.

Refactoring. The refactoring category applies to refactoring
reviews in which there is a “focus on evaluating the correctness
of the code transformation and checking whether or not the
submitted changes lead to a safe and trustworthy refactoring“
[9]. False negatives belonging to this category, portray multiple
code refactorings in one commit. On basic intuition, the
refactoring category is reasonable to apply. The incorrect
prediction on this example is attributed to the minority class
status of the ”Refactoring” category, and the inability of the
model to learn rules for predicting. The false positive samples
lack a description and are a non-feasible prediction task in
any case. The true labels of the false negative were ”Testing”
and ”Refactoring”. The true label of the false positive was
”Refactoring”.

RQ2 Summary: The qualitative examination of example
misclassifications supports the efficacy of the model. The
incorrectly categorized refactoring reviews seem to be either
ambiguous to human intuition, counter-intuitive, or lacking in
information to the point where no conclusion could be drawn
from just the subject and description supplied in these cases.
Those conclusions can be derived given the assumptions that
all true labels are representing the ground truth. However,
given the fact that all case classifications have been made
by manual assessments of single engineers [9], they are not
necessarily representative of a common understanding across
all members of this domain. For meaningful evaluation of the
models performance, a validation with feedback from a higher
number of knowledgeable people would become necessary.
Model performance varied significantly more at the category
level than at the aggregate level addressed in RQ1. The GBM
and GBM-Length models correctly predicted more integration
and refactoring labels than the trivial and averaged models,
achieving higher recall rates, while the reverse occurred in the
quality and objective categories. The GBM and GBM-Length
models predicted more positive labels on minority classes than
the trivial and averaged models. There was no meaningful
difference between the GBM and GBM-Length model in any
category. All category level improvements in precision or recall
between model variations were the result of a performance
trade-off, and accuracy was similar across all models across
all categories. Across all models, the refactoring category
could not be reliably predicted, whereas Objective and Testing
were able to be consistently predicted.

IV. Conclusion
Predicting the category of refactoring code reviews in their

initial push stands to benefit the code review workflow and
decrease average time to merge in code bases. In this re-
search, we tested the feasibility of utilizing computationally-
economical state-of-the-art models for this prediction task,
as well as alternative traditional methods. The results were
evaluated quantitatively and qualitatively. Our findings reveal
that this prediction task shows strong potential, and we were
able to create models achieving high levels of traditional
performance measures.

References
[1] Johnatan Oliveira, Markos Viggiato, Mateus F Santos, Eduardo

Figueiredo, and Humberto Marques-Neto. An empirical study on the
impact of android code smells on resource usage. In SEKE, pages 314–
313, 2018.

[2] Rodrigo Morales, Shane McIntosh, and Foutse Khomh. Do code review
practices impact design quality? a case study of the qt, vtk, and itk
projects. In International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 171–180, 2015.

[3] Eman Abdullah AlOmar. Deciphering refactoring branch dynamics
in modern code review: An empirical study on qt. Information and
Software Technology, 177:107596, 2025.

[4] Ishan Aryendu, Ying Wang, Farah Elkourdi, and Eman Abdullah Alo-
mar. Intelligent code review assignment for large scale open source
software stacks. In Proceedings of the 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–6, 2022.

[5] Moataz Chouchen, Ali Ouni, and Mohamed Wiem Mkaouer. Multicr:
Predicting merged and abandoned code changes in modern code review
using multi-objective search. ACM Transactions on Software Engineer-
ing and Methodology, 33(8):1–44, 2024.

[6] Moataz Chouchen, Ali Ouni, Jefferson Olongo, and Mohamed Wiem
Mkaouer. Learning to predict code review completion time in modern
code review. Empirical Software Engineering, 28(4):82, 2023.

[7] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and chal-
lenges of modern code review. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, page 712–721. IEEE
Press, 2013.

[8] Laura MacLeod, Michaela Greiler, Margaret-Anne Storey, Christian
Bird, and Jacek Czerwonka. Code reviewing in the trenches: Challenges
and best practices. IEEE Software, 35(4):34–42, 2018.

[9] Eman Abdullah AlOmar, Moataz Chouchen, Mohamed Wiem Mkaouer,
and Ali Ouni. Code review practices for refactoring changes: An
empirical study on openstack. In Proceedings of the 19th international
conference on mining software repositories, pages 689–701, 2022.

[10] Facebook AI Research. Fasttext, 2015.
[11] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.

Enriching word vectors with subword information, Jun 2017.
[12] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Ben-

jamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and
Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[13] Jianyang Deng and Yijia Lin. The benefits and challenges of chatgpt: An
overview. Frontiers in Computing and Intelligent Systems, 2(2):81–83,
2022.

[14] Dwaipayan Roy, Debasis Ganguly, Sumit Bhatia, Srikanta Bedathur,
and Mandar Mitra. Using word embeddings for information retrieval:
How collection and term normalization choices affect performance. In
Proceedings of the 27th ACM international conference on information
and knowledge management, pages 1835–1838, 2018.

[15] Steven Bird, Ewan Klein, and Edward Loper. Natural language
processing with python. O’Reilly Media Inc., 2009.

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.
Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.

[17] Steffen Herbold, Alexander Trautsch, and Fabian Trautsch. On the
feasibility of automated prediction of bug and non-bug issues. Empirical
Software Engineering, 25(6):5333–5369, 2020.


