Evaluating the Effectiveness of ChatGPT in Improving Code
Quality

Shanal Divyansh*, Pranjal Apoorva®*, Suraj Sanjay Singh*, Anita Ershadi, Hiral Makwana, Eman Abdullah AlOmar

Stevens Institute of Technology, Hoboken, New Jersey, USA
{sdivyans,papoorva,singh71,aershadi,hmakwan3,ealomar} @stevens.edu

Abstract—Code refactoring is a crucial process in software
development that helps improve the quality and maintainability
of code without changing its functionality. Although code refac-
toring is widely recognized as an essential practice, measuring
its impact on code quality is challenging. This paper investigates
the impact of ChatGPT, on code quality. The study focuses on
four key metrics: cyclomatic complexity, cognitive complexity,
code smells, and time debt, using SonarQube to assess code
quality and identify potential issues. The original dataset of
Python code is compared with the refactored dataset to evaluate
the effectiveness of ChatGPT in improving code quality. The
results demonstrate that ChatGPT’s refactoring efforts have led
to improvements in the quality of the codebase. The refactored
code exhibited lower complexity values, fewer code smells, and
reduced time debt, highlighting ChatGPT’s success in addressing
significant issues that can cause system failures and performance
issues. The study emphasizes the potential benefits of using
ChatGPT for code refactoring, which can significantly benefit
software development efforts by improving code quality and
reducing development time.

Index Terms—quality, ChatGPT, LLMs

I. INTRODUCTION

Software development is a complex and ever-evolving field,
where code quality is critical to software success. Code refac-
toring is essential for improving code quality by restructuring
and optimizing existing code without changing its external
behavior [1]], [2]. In recent years, there has been a surge
of interest in automated code refactoring tools, powered by
advances in machine learning and natural language processing
130, 14, [5)], [6]. ChatGPT is one such tool, which is a
significant language model trained on the GPT-3.5 architecture
and has shown effectiveness in generating high-quality code.

ChatGPT can contribute to improving code quality by aiding
in the refactoring process. By leveraging its natural language
processing capabilities, ChatGPT can identify code smells or
areas in the codebase that need improvement. It can then
suggest or implement refactoring techniques to enhance the
quality and maintainability of the software.

Measuring the impact of ChatGPT-driven refactoring can
be done using metrics such as cyclomatic complexity, cog-
nitive complexity, and code smells. Cyclomatic complexity
allows developers to determine the complexity of a software
component and identify areas with high defect rates. By uti-
lizing ChatGPT to refactor these high cyclomatic complexity

*These authors contributed equally to this work.

value components, developers can decrease their complexity,
leading to fewer defects and an overall improvement in code
quality. Using cyclomatic complexity as a metric for software
testing offers several benefits. Firstly, it can help identify
high-risk components likely to have a high defect rate or
be challenging to test and maintain. Secondly, by identifying
modules with high cyclomatic complexity values, developers
can focus on refactoring or redesigning those modules to
reduce their complexity and improve maintainability. This
leads to improved code quality and reduced likelihood of
defects. Additionally, reducing the complexity of software
components makes them easier to understand and maintain
over time, enhancing their maintainability. Finally, cyclomatic
complexity is widely used in criticality prediction and static
code analysis tools, making it a valuable metric for assessing
the overall quality of software components [7]. Cognitive
complexity is another metric that measures the ease of un-
derstanding a code. Refactoring assisted by ChatGPT can
help simplify the code, reduce cognitive complexity, and
result in more maintainable and easier-to-understand code.
While cyclomatic complexity focuses on the code’s structure,
cognitive complexity considers both internal structures and
external inputs/outputs. Measuring cognitive functional size
provides a stable and practical software complexity measure-
ment that helps explain the fundamental nature of software
complexity during the design, implementation, or maintenance
phases of software engineering. Unlike cyclomatic complexity,
cognitive functional size is more robust and independent
of language or implementation [8]. Additionally, cognitive
complexity is closely related to code maintainability, as it
measures software’s cognitive and psychological complexity as
an intelligent human artifact. Therefore, measuring cognitive
functional size can help identify complex parts of the code that
may be difficult to maintain, enabling developers to improve
their designs and make them more maintainable.

Further, reducing code smells indicates the effectiveness
of the refactoring process [9]. By addressing various code
smells identified by ChatGPT, developers can significantly
improve the software’s quality while making future changes
more manageable. Code smells indicate potential problems in
the source code that can make it harder to maintain over time.
For example, duplicated code can make it harder to update the
code in the future [10]], while long methods can make it harder
to understand and modify the code [L1]]. By addressing code

smells early on, developers can improve the maintainability
of their software. Refactoring the source code to remove code
smells can make it easier to understand, modify, and extend
over time. This can help reduce the maintenance cost and
improve the software’s overall quality. In addition, identifying
and addressing code smells can help to prevent bugs and other
issues from arising in the future by improving the overall
design of the source code. This can lead to more stable and
reliable software that is easier to maintain over time [12]].

Time debt is the accumulation of technical debt over time,
which can occur when software is developed quickly with-
out proper planning, design, or testing. Many factors can
contribute to technical debt, including taking shortcuts, using
outdated technologies or libraries, or failing to maintain and
update code properly. Time debt is crucial in restructuring code
since it can lead to various issues harmful to software develop-
ment initiatives. Time debt can lead to increased maintenance
costs, reduced developer productivity, and decreased software
quality, impacting the ability to deliver software products on
time and within budget. Refactoring reduces time debt by
improving code quality, which makes it easier to maintain
and update over time. This can lead to cost savings, increased
productivity, and superior software quality, resulting in a better
overall development process and better results [13]], [6].

In this study, we investigate the impact of ChatGPT on code
quality by experimenting with how code quality is affected
when code is refactored using this tool. Specifically, we focus
on four key code quality metrics: cyclomatic complexity,
cognitive complexity, code smells, and time debt. To measure
these metrics, we use SonarQube, a popular static analysis
tool used to assess code quality and identify potential issues
[14]. To do so, we compare the original dataset of Python
code with the refactored dataset to evaluate the effectiveness
of ChatGPT in improving code quality across these metrics.
The results of this study can help inform software developers
and researchers about the potential benefits and challenges
associated with using ChatGPT for code refactoring and its
impact on code quality, as measured by SonarQube.

II. PROBLEM STATEMENT

Code refactoring is a crucial process in software devel-
opment that helps improve the quality and maintainability
of code without changing its functionality. Although code
refactoring is widely recognized as an essential practice,
measuring its impact on code quality is challenging [[15]]. This
study aims to investigate the effectiveness of code refactoring
in improving code quality using SonarQube on Cyclomatic
Complexity, Cognitive Complexity, Code Smell, and Time
Debt metrics. Specifically, the study will focus on how Chat-
GPT, a language model trained on the GPT-3.5 architecture,
can improve code quality after refactoring a dataset of Python
codes. The study aims to answer the following Research
Questions (RQs):

¢« RQI1. How does ChatGPT affect the Cyclomatic Com-

plexity after refactoring a dataset of Python code?

o RQ2. How does ChatGPT affect the Cognitive Complex-
ity after refactoring a dataset of Python code?

e RQ3. How does ChatGPT affect the Code Smells after
refactoring a dataset of Python code?

e RQ4. How does ChatGPT affect the Time Debt after
refactoring a dataset of Python code?

By answering these questions, this study will provide insights
into the effectiveness of code refactoring in improving code
quality and reducing technical debt. The findings of this
study can be helpful for software developers, managers, and
researchers interested in improving software quality through
code refactoring.

III. STUDY DESIGN

This research aims to evaluate the impact of ChatGPT
on code quality metrics, specifically Cyclomatic Complexity,
Cognitive Complexity, Code Smell, and Time Debt, by com-
paring the metrics of “Original Files” and ‘“Refactored Files.”
This provides valuable insights into the impact of ChatGPT on
code quality metrics, which can inform the development of Al-
assisted software development tools and improve code quality
in software development. Our study methodology includes the
following steps:

o Phase 1: We utilized an existing dataset containing
around 10,000 Python files [[16]]. This dataset is used as
the basis for our analysis.

o Phase 2: Using a JavaScript script we created, we have
extracted each file from the above CSV file into separate
Python files called the “Original Files.” These files are
used as the baseline for our analysis.

o Phase 3: We used the ChatGPT API in the JavaScript
script to send each previously generated Original Files
to be refactored and stored as independent Python files
called “Refactored Files.” Then we uploaded the “Origi-
nal Files” and “Refactored Files” to SonarQube, which
provided us with metrics for the Cyclomatic Complexity,
Cognitive Complexity, Code Smell, and Time Debt for
all of the Python files. Then, we compared the “Original
Files” metrics and ‘“Refactored Files” to see how Chat-
GPT affected code quality. We examined how ChatGPT
affects Cyclomatic Complexity, Cognitive Complexity,
Code Smell, and Time Debt. We also analyzed to see if
there were any significant differences in the metrics for
“Original Files” and “Refactored Files.” We also used
visualizations, such as charts, to present the findings
clearly and concisely.

We obtained a dataset of 10,000 Python submissions from
Stepik and Hyperskill platforms, described in [[16]. The dataset
included essential items such as date, user, and the raw Python
code. We only kept the raw data during preprocessing and
discarded other details. It is important to note that we have
manually tested the files with large classes during this phase.
We found that when feeding large programs broken into multi-
ple parts, ChatGPT sometimes exhibited a phenomenon known
as “hallucination.” By “hallucination,” we mean that ChatGPT

30

—— Original Code

——Refactored Code

Number of python files

Figure 1: Cyclomatic Complexity by SonarQube - before and
after refactoring.

——Original

——Refactored

Number of Codes

Figure 2: Cognitive Complexity by SonarQube - before and
after refactoring.

generated unrelated or inconsistent responses with the given
context. This observation is in line with a recent study that
mentioned ChatGPT is susceptible to “hallucination” when
interpreting code semantic structures and fabricating non-
existent facts [I7]. This limitation prompted us to restrict
the length of the programs we fed into ChatGPT. Thus, we
selected files with lines of code (LOC) more than 20, and
ended up with 1032 files. Our next step was to split the
large combined CSV file containing all the Python codes into
individual files. We first added the keyword “End-" after each
code in the merged file to achieve this. We then imported the
file into our node environment and split the code using the
“End-" keyword, writing each resulting code into an individual
file.

We then developed a program using Node and JavaScript,
which read the individual files and used ChatGPT’s API to
feed each code to refactor. We provided a code fragment to
ChatGPT and asked it to perform the refactoring. We saved the
output from ChatGPT into each file, allowing us to have the
original and refactored files. We then utilized SonarQube
to run the analysis on both the original code files and the
refactored code files. This gave us quantifiable metrics such as
cognitive complexity, cyclomatic complexity, and code smells.
These metrics were used in our final analysis to compare the

——original

—— Refactored

Figure 3: Code Smell by SonarQube - before and after
refactoring.

a0

mm

Number of Python Files

Figure 4: Lines of code by SonarQube - before and after
refactoring

before-and-after effects of the code refactoring to determine if
ChatGPT had improved the code quality.

To summarize, we obtained a dataset of Python submissions.
We used a combination of Node, JavaScript, ChatGPT, and
SonarQube to refactor the code and assess the impact of the
refactoring on the code quality.

IV. EXPERIMENTAL RESULTS

A. RQI: How does ChatGPT affect the Cyclomatic Complex-
ity after refactoring a dataset of Python code?

Figures [T] and [7a] show the Cycolmatic Complexity before
and after refactoring. Upon conducting our analysis, it was
observed that the initial code exhibited a median cyclomatic
complexity of 7, whereas the refactored code demonstrated
a value of 6. This indicates that the refactored code is less
intricate and more manageable, making it simpler to compre-
hend and maintain than the original code. The reduction in
cyclomatic complexity indicates that the refactoring procedure
has been successful in simplifying the code and enhancing
its overall quality, resulting in an improved control flow and
readability, and we can make the following observations: (1)
Generally, the cyclomatic complexity of the refactored code is
lower than the original code. This indicates that the refactored

sonarqube Projocts lssues Rulss QualtyProfies QualtyGates Adminisuation Q o

(a) Code Smell - Before

sonarqube Projocts lssues Rules QualtyProfies QualtyGates Administration Q o

(b) Code Smell - After

Figure 5: Code smell in the original and refactored code.

MEASURES

New Code

Overall Code

10 e nowsugs Reiiabilty (B
O & New Vunerabilties security (&)
3 @ Newsecuriy Hotspots © 0 0.0% Reviewes Security Review (B}

(a) Time debt - Before

MEASURES

New Code
Since April9, 2023
Started 4 days ago

Overall Code

10 Sevowsgs Reliabilty (B
O 6 New Vuinerabilties Security (A
8 © tow Securty Hotspots © O 0.0% FReviewes Security Review (@
70 2N ceavent 605 @ Newcode smeis Maintainabilty (&)

(b) Time debt- After

Figure 6: Time debt in the original and refactored code.

code is simpler, easier to maintain, and potentially less error-
prone. Lower complexity scores are usually desirable, as
they often signify that the code is more straightforward to
understand. (2) However, there are some instances where
the refactored code has a higher cyclomatic complexity than
the original code. This could be due to an increase in code
branching or changes in the control flow of the refactored code.
In such cases, it is essential to review the refactored code to
ensure that it still meets the desired quality and maintainability
standards. (3) There are also instances where the cyclomatic
complexity of the original and refactored codes is the same.
This might mean the refactoring process did not significantly
improve code simplicity or maintainability. However, it is still
possible that the refactored code offers other benefits, such as
enhanced readability or better adherence to coding standards.
Overall, the refactored code generated by ChatGPT generally
demonstrates lower cyclomatic complexity than the original
code. This positive outcome suggests that the refactored code
is easier to maintain and understand. However, it is important
to carefully review each refactored code snippet to ensure it
meets the desired quality standards and doesn’t introduce new
issues.

B. RQ2: How does ChatGPT affect the Cognitive Complexity
after refactoring a dataset of Python code?

The Cognitive Complexity before and after refactoring is
depicted in Figures [2] and Our analysis shows that the

median cognitive complexity of the refactored code is 8, which
is lower than the original code’s value of 11. This indicates
that the refactored code is comparatively simpler and easier
to comprehend than the original code. The result suggests
that the refactoring process has likely enhanced the code’s
quality, making it more maintainable and reducing the chances
of errors or bugs in the future. ChatGPT’s refactored code
displays a reduced average cognitive complexity compared to
the original code, implying that it is more comprehensible,
maintainable, and modifiable, leading to improved software
quality and decreased development time. The refactored code
adheres to best practices such as code decomposition, clear
variable naming, and eliminating redundancies, promoting
improved readability and maintainability, making it more
efficient for developers to work with. However, in some
cases, the cognitive complexity of the refactored code may
increase. For example, including more complex algorithms
or data structures can increase the cognitive complexity of
the code. Furthermore, if the code is refactored to include
more functions or methods, the cognitive complexity may also
increase due to the necessity of comprehending the different
operations and interactions between the functions or methods.

C. RQ3: How does ChatGPT affect the Code Smells after
refactoring a dataset of Python code?

Figures 3] [5] and [7d| provide an overview of the metrics
before and after the applied refactoring. The refactored code

has significantly improved code quality, as evidenced by
the reduced code smells identified by SonarQube. During
the analysis, the original code was found to have 724 code
smells, out of which 3 were blockers, 295 were minor, 166
were critical, and 260 were major code smells. In contrast,
the refactored code exhibited only 11 blockers, 327 minor,
104 critical, and 173 major code smells. It is noteworthy
to mention that a blocker code smell refers to an issue
that can obstruct the execution of a function or application,
causing significant performance and functionality issues, and
requiring immediate attention. On the other hand, minor code
smells are less critical and may not immediately impact the
system’s performance. However, they can accumulate over
time and affect code maintainability. Similarly, major code
smells can cause significant issues if left unresolved and may
affect the system’s performance or functionality. Critical code
smells are the most severe and require immediate attention as
they can lead to major failures in the system. SonarQube
executes rules on source code to generate issues. We also
explored some of the major and critical code smell issues and
observed the changes in the following areas: - The number of
instances of the “add missing ‘self’ parameters” code smell
was reduced from 91 to 12.

- The number of instances of the “remove unused function
parameter” code smell was reduced from 56 to 20.

- The number of instances of the “rename function” code
smell was reduced from 84 to 61.

- The number of instances of the “remove commented-out
code” code smell was reduced from 19 to 4.

- The number of instances of the “remove duplicates in this
character class” code smell was reduced from 19 to 14.

Example with Description: Although it is noticeable
the code smells that ChatGPT can identify and help remove,
it is important to note that ChatGPT cannot eliminate all
code smells, and some may still require manual intervention.
In the original code, there were 7 code smell issues that
were reduced to 2 after refactoring using ChatGPT. While
ChatGPT can be a useful tool in improving software quality,
it should be used in conjunction with other methods to ensure
comprehensive code smell detection and removal. Therefore,
it is recommended to use ChatGPT as a complementary
tool alongside other manual and automated techniques for
detecting and removing code smells.

D. RQ4: How does ChatGPT affect the Time Debt after
refactoring a dataset of Python code?

ChatGPT’s refactoring efforts have yielded noteworthy en-
hancements in the time debt of the majority of the code
files. By refactoring the code, ChatGPT has managed to
decrease the time debt by nearly 24 hours, thereby producing
code of superior quality. The refactored code can potentially
diminish the time required for bug fixes and code maintenance
by addressing code smells and simplifying complexity (see

Figures [6] and [7d).

In software development, the metric of lines of code (LOC)
is commonly used to estimate the size of a software project.
However, it is important to note that this metric alone does
not always accurately indicate the quality of the code. It is a
misconception that more lines of code necessarily mean better
software. In fact, sometimes, fewer lines of code can be more
efficient, readable, and maintainable than code with more lines.
Therefore, relying solely on LOC to assess code quality can
be misleading. Instead, it is crucial to consider other metrics
such as complexity to evaluate the quality of the code.

Despite the aforementioned concerns, we also looked into
the metric of lines of code and traditional metrics such as
cognitive complexity, technical debt, cyclometric complexity,
and code smell. Our analysis showed that the median lines of
code for the original code were 22, while the refactored code
had a median of 19 lines of code. This suggests that code
refactoring can result in a reduction in code size, potentially
leading to simpler and more maintainable software. So, while
it is important not to rely solely on LOC, it is still a useful
metric to consider in conjunction with other metrics for a more
comprehensive evaluation of the code (see Figures [4] and [7¢).

V. TAKEAWAYS

Refactoring code by ChatGPT has successfully improved
the code quality in multiple ways. The median values of the
refactored code’s cyclomatic complexity and cognitive com-
plexity are lower than those of the original code, indicating that
the refactored code is less intricate and simpler to comprehend
and maintain. This demonstrates that the refactoring has made
the code more manageable and easier to work with. Addi-
tionally, ChatGPT’s refactoring efforts have yielded significant
improvements in the time debt of the code files, reducing
it by almost 24 hours. This implies that the code is now
more efficient, faster, and of superior quality, making it more
productive and valuable to the project. However, it is essential
to note that while the refactoring has successfully reduced
major/critical issues, minor issues have increased in some
cases. Therefore, monitoring minor problems and refining the
automated tools is essential to ensure that they effectively
address these issues. Although ChatGPT can identify and
eliminate certain code smells, it cannot eradicate them. Hence,
it is imperative to have developers examine the code to ensure
its quality and rectify any issues that may arise. Below, we
list the implications for developers, researchers, tool builders,
and educators.

A. Implications for Developers

The findings of this study can be advantageous for de-
velopers as it offers an automated approach to enhancing
the readability and maintainability of their code. By utilizing
ChatGPT and SonarQube, developers can refactor their code
and obtain measurable parameters that demonstrate the effi-
ciency of the refactoring procedure. This enables developers to
recognize the sections in their code that require enhancement,
implement suitable measures to boost their code quality and
adhere better to coding standards.

| | | |
1 =g
| | | |
(S 1

(a) Cyclomatic Complexity (b) Cognitive Complexity

(c) Code Smell

(d) Time Debt

Figure 7: Boxplots before and after the application of refactoring.

B. Implications for Researchers

Future research can compare the effectiveness of ChatGPT
with other state-of-the-art Al tools, such as Bard and GitHub
Copilot. These tools also utilize natural language processing
and machine learning techniques to aid in code generation and
refactoring. The comparison can evaluate the performance of
these tools across various metrics, such as code quality, devel-
opment time, and usability. This study focused on a relatively
medium codebase with limited issues. Future research can
investigate how ChatGPT performs on larger, more complex
codebases with a broader range of issues. Additionally, it
would be valuable to analyze how ChatGPT handles edge
cases, such as code with unconventional patterns or syntax.
Further, this study focused on Python code, but it would
be interesting to investigate how ChatGPT performs in other
programming languages. Different programming languages
have different syntax and semantics, which can affect the
effectiveness of ChatGPT in generating high-quality code.
Future research can evaluate the performance of ChatGPT in
languages such as Java, C++, and JavaScript.

C. Implications for Tool Builders

The findings of this study can be utilized by researchers
and tool builders to incorporate ChatGPT into code editors
or IDEs, utilizing the generated outputs to enhance current
tools and create new ones that can automatically refactor code.
By adopting the same approach of combining ChatGPT with
SonarQube, researchers and tool builders can create more
advanced Al-powered refactoring tools.

D. Implications for Educators

The findings of this study show that by incorporating auto-
mated code refactoring into programming courses, students
can learn to write better code by seeing the changes that
can be made to improve the quality of their code. This
helps students understand how to structure their code, how
to optimize their code, and how to eliminate redundant code.
Additionally, automated code refactoring tools can help stu-
dents avoid common coding mistakes and learn how to avoid
them. Additionally, courses should teach students how to use
automated refactoring tools effectively, so they can continue
improving their code after the course is completed.

VI. THREATS TO VALIDITY

Threats to conclusion validity. It refers to the possibility that
the study’s findings are due to chance. Concerning sampling
bias, the dataset of Python submissions may not represent all
Python code. For example, it may only contain code from
Stepik and Hyperskill platforms, which may have different

coding standards than others. Further, the metrics used in
the analysis (i.e., cyclomatic complexity, cognitive complexity,
code smells, and time debt) may not be sufficient to fully
capture the impact of code refactoring on code quality. Other
metrics and evaluation techniques may be required to obtain
a more comprehensive understanding of the effects of code
refactoring.

Threats to internal validity. It refers to the possibility that the
study’s findings are due to factors other than the independent
variable. One limitation is that the model is only as good as
the sample of code provided to it. If the code sample does not
represent the entire codebase, the model’s suggestions may
not be helpful. Additionally, ChatGPT cannot understand the
broader context of the code, such as its purpose or intended
behavior. As a result, the model’s suggestions may not always
be appropriate for the specific task at hand. Concerning tool
dependency, using ChatGPT and SonarQube as tools for
code refactoring and analysis may have introduced biases and
limitations in the study. The effectiveness and accuracy of
these tools may affect the validity of the conclusions drawn
from the analysis

Threats to construct validity. It refers to the extent to
which the study accurately measures the constructs they are
supposed to measure. The first threat relates to inadequate
measurement. The metrics used in the analysis may not fully
capture the construct of code quality. Other constructs, such as
maintainability, readability, and efficiency, may also need to
be considered to obtain a more comprehensive understanding
of the effects of code refactoring. Another threat relates to
inappropriate operationalization. That is, how the constructs
are measured may not be appropriate or valid, leading to
inaccurate conclusions.

Threats to external validity. It refers to the extent to which
the study’s findings can be generalized to other populations
and settings. For population validity, the experiment’s results
may not be generalizable to other code populations, such
as code written by professional programmers. As for setting
validity, the experiment’s results may not be generalizable
to other settings, such as different programming languages
or different coding platforms. Finally, regarding treatment
fidelity, the ChatGPT refactoring process may not have been
implemented consistently across all code files, which could
have led to variations in the results.

VII. RELATED WORK

Recent studies utilized ChatGPT for different software
engineering tasks. AlOmar et al. [18] explored the interac-
tion dynamic between developer and ChatGPT. The authors

(e) Lines of Code

found that developers used generic and specific refactoring-
related keywords in their refactoring requests. DePalma et al.
[19] investigated ChatGPT refactoring capabilities to refactor
the code. White et al. [20] introduces methods for crafting
prompts in software engineering by utilizing patterns to ad-
dress typical issues encountered with LLMs. The research
offers a catalog that organizes these patterns based on the
specific problems they aim to resolve. Furthermore, the study
explored various prompt patterns designed to enhance code
quality, support refactoring, aid in requirements gathering,
and improve software design.. In another study, Biswas [21]
provides a summary of ChatGPT, which boasts numerous
capabilities in computer programming. These skills encompass
code auto-completion, debugging, prediction, error correction,
optimization, documentation creation, chatbot development,
transforming text into code, and addressing technical queries.
The author highlighted the ability of ChatGPT to provide
explanations and guidance to users and concluded that it is a
powerful tool for the programming community. Haque and Li
[22] explored the capabilities of ChatGPT as a debugging tool
and best practices to integrate into the software development
workflow. Their findings show that ChatGPT is a helpful
tool for debugging, but it should be used with caution in
software development. Ma et al. [17] performed a study
evaluating the capabilities and limitations of ChatGPT in
software engineering in three aspects: 1) syntax understanding,
2) static behavior understanding and 3) dynamic behavior
understanding. The authors concluded that ChatGPT possesses
capabilities similar to an Abstract Syntax Tree (AST) parser,
ChatGPT is susceptible to hallucination when interpreting
code semantic structures and fabricating non-existent facts,
which underscores the need to explore methods to verify the
correctness of ChatGPT outputs to ensure its dependability in
software engineering tasks.

VIII. CONCLUSION

ChatGPT’s refactoring efforts have significantly improved
the codebase’s quality. The refactored code has exhibited lower
cyclomatic and cognitive complexity values, indicating that it
is simpler and more manageable, leading to improved control
flow, readability, and maintainability. The reduction in code
smells, particularly the elimination of critical and blocker code
smells, highlights ChatGPT’s success in addressing significant
issues that can cause system failures and performance issues.
Furthermore, the refactored code’s potential to decrease time
debt by nearly 24 hours emphasizes its efficiency in reducing
the time required for bug fixes and code maintenance. These
results suggest that ChatGPT’s capabilities as a language
model can significantly benefit software development efforts
by improving code quality and reducing development time.

REFERENCES

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and d. Roberts, Refactoring:
Improving the Design of Existing Code. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?1d=311424

[5]

[6]

[7]
[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

E. A. AlOmar, M. W. Mkaouer, C. Newman, and A. Ouni, “On
preserving the behavior in software refactoring: A systematic mapping
study,” Information and Software Technology, p. 106675, 2021.

S. Fernandes, A. Aguiar, and A. Restivo, “Liveref: a tool for live
refactoring java code,” in 37th IEEE/ACM International Conference on
Automated Software Engineering, 2022, pp. 1-4.

M. Aniche, E. Maziero, R. Durelli, and V. H. Durelli, “The effectiveness
of supervised machine learning algorithms in predicting software refac-
toring,” IEEE Transactions on Software Engineering, vol. 48, no. 4, pp.
1432-1450, 2020.

A. S. Nyamawe, “Mining commit messages to enhance software
refactorings recommendation: A machine learning approach,” Machine
Learning with Applications, vol. 9, p. 100316, 2022.

Y. Tang, R. Khatchadourian, M. Bagherzadeh, R. Singh, A. Stewart,
and A. Raja, “An empirical study of refactorings and technical debt
in machine learning systems,” in 202/ [EEE/ACM 43rd international
conference on software engineering (ICSE). 1EEE, 2021, pp. 238-250.
(2016) Cyclomatic complexity. [Online]. Available: https://ieeexplore.
ieee.org/document/7725232

(2003) Measurement of the cognitive functional complexity
of software. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/1225955

M. De Stefano, M. S. Gambardella, F. Pecorelli, F. Palomba, and
A. De Lucia, “casper: A plug-in for automated code smell detection
and refactoring,” in Proceedings of the International Conference on
Advanced Visual Interfaces, 2020, pp. 1-3.

F. Arcelli Fontana, M. Zanoni, and F. Zanoni, “A duplicated code
refactoring advisor,” in Agile Processes in Software Engineering and Ex-
treme Programming: 16th International Conference, XP 2015, Helsinki,
Finland, May 25-29, 2015, Proceedings 16. Springer, 2015, pp. 3—14.
P. Meananeatra, S. Rongviriyapanish, and T. Apiwattanapong, “Using
software metrics to select refactoring for long method bad smell,” in The
8th Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI) Association of Thailand-Conference
2011. IEEE, 2011, pp. 492-495.

(2017) How do developers select and prioritize code smells?
a preliminary study. [Online]. Available: https://ieeexplore.ieee.org/
document/8094447

(2019) Technical debt. [Online]. Available: https://martinfowler.com/
bliki/TechnicalDebt.html

A. Trautsch, S. Herbold, and J. Grabowski, “Are automated static
analysis tools worth it? an investigation into relative warning density
and external software quality on the example of apache open source
projects,” Empirical Software Engineering, vol. 28, no. 3, p. 66, 2023.
J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,” IEEE Transactions on Software Engineering, vol. 44, no. 1, pp.
44-69, 2017.

A. Birillo, 1. Vlasov, A. Burylov, V. Selishchev, A. Goncharov,
E. Tikhomirova, N. Vyahhi, and T. Bryksin, “Hyperstyle: A tool for
assessing the code quality of solutions to programming assignments,”
in Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education V. 1, 2022, pp. 307-313.

W. Ma, S. Liu, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie, and
Y. Liu, “The scope of chatgpt in software engineering: A thorough
investigation,” arXiv preprint arXiv:2305.12138, 2023.

E. A. AlOmar, A. Venkatakrishnan, M. W. Mkaouer, C. Newman,
and A. Ouni, “How to refactor this code? an exploratory study on
developer-chatgpt refactoring conversations,” in Proceedings of the 21st
International Conference on Mining Software Repositories, 2024, pp.
202-206.

K. DePalma, I. Miminoshvili, C. Henselder, K. Moss, and E. A. AlOmar,
“Exploring chatgpt’s code refactoring capabilities: An empirical study,”
Expert Systems with Applications, vol. 249, p. 123602, 2024.

J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt, “Chatgpt
prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design,” arXiv preprint arXiv:2303.07839,
2023.

S. Biswas, “Role of chatgpt in computer programming.: Chatgpt in
computer programming.” Mesopotamian Journal of Computer Science,
vol. 2023, pp. 8-16, 2023.

M. A. Haque and S. Li, “The potential use of chatgpt for debugging
and bug fixing,” EAI Endorsed Transactions on Al and Robotics, vol. 2,
no. 1, pp. e4d—e4, 2023.

http://dl.acm.org/citation.cfm?id=311424
https://ieeexplore.ieee.org/document/7725232
https://ieeexplore.ieee.org/document/7725232
https://ieeexplore.ieee.org/abstract/document/1225955
https://ieeexplore.ieee.org/abstract/document/1225955
https://ieeexplore.ieee.org/document/8094447
https://ieeexplore.ieee.org/document/8094447
https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html

	I Introduction
	II Problem Statement
	III Study Design
	IV Experimental Results
	IV-A RQ1: How does ChatGPT affect the Cyclomatic Complexity after refactoring a dataset of Python code?
	IV-B RQ2: How does ChatGPT affect the Cognitive Complexity after refactoring a dataset of Python code?
	IV-C RQ3: How does ChatGPT affect the Code Smells after refactoring a dataset of Python code?
	IV-D RQ4: How does ChatGPT affect the Time Debt after refactoring a dataset of Python code?

	V Takeaways
	V-A Implications for Developers
	V-B Implications for Researchers
	V-C Implications for Tool Builders
	V-D Implications for Educators

	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

