
Intelligent Code Review Assignment for Large
Scale Open Source Software Stacks

Abstract—In the process of developing software, code review is
crucial. By identifying problems before they arise in production,
it enhances the quality of the code. Finding the best reviewer
for a code change, however, is extremely challenging especially
in large scale ,especially open source software stacks with
cross functioning designs and collaborations among multiple
developers and teams. Additionally, a review by someone who
lacks knowledge and understanding of the code can result in
high resource consumption and technical errors. The reviewers
who have the specialty in both functioning (domain knowledge)
and non-functioning areas of a commit are considered as the
most qualified reviewer to look over any changes to the code.
Quality attributes serve as the connection among the user re-
quirements, delivered function description, software architecture
and implementation through put the entire software stack cycle.
In this study, we target on auto reviewer assignment in large scale
software stacks and aim to build a self-learning, and self-correct
platform for intelligently matching between a commit based on its
quality attributes and the skills sets of reviewers. To achieve this,
quality attributes are classified and abstracted from the commit
messages and based on which, the commits are assigned to the
reviewers with the capability in reviewing the target commits.
We first designed machine learning schemes for abstracting
quality attributes based on historical data from the OpenStack
repository. Two models are built and trained for automating the
classification of the commits based on their quality attributes
using the manual labeling of commits and multi-class classifiers.
We then positioned the reviewers based on their historical data
and the quality attributes characteristics. Finally we selected the
recommended reviewer based on the distance between a commit
and candidate reviewers. In this paper, we demonstrate how the
models can choose the best quality attributes and assign the code
review to the most qualified reviewers. With a comparatively
small training dataset, the models are able to achieve F-1 scores
of 77 and 85.31 percent, respectively.

Index Terms—Large-scale, Open-source, Code Review, Com-
mit Classification, Machine Learning, MPNet

I. INTRODUCTION

Quality attributes are the non-functional requirements eval-
uated by the developers and stakeholders. Software architects
extract quality attributes from requirements specification to
enhance the architecture design, raise stakeholders satisfaction
and apply them into the software design and implementations.
Identifying code check-ins related to quality attribute assist
in architecture design and improving the software quality.
Maintenance is an anticipated phase in the project life cycle.
This phase might include project expansion or bug fixes related
to certain quality attribute(s) such as security enhancement,
performance improvement, test coverage or improve test-
ability and documentation related.

Review and confirmation during the maintenance phase are
also required to fulfill any required changes. Improper assign-

ments of the reviews results in inefficiency of the software
development and increase the risks of faults and vulnerabilities
in them, especially large scale software systems. In this
paper, we will use machine learning techniques to automate
the assignment process for developers and architects based
on the history of the reviewers and the quality attribute(s)
extracted from the developer’s commit messages. The goal
of this study is to streamline the review allocation process
using the traits of quality attributes. When choosing reviewers
based on the application fields, the reviewers with software
expertise are constrained because the functional features of
software can vary significantly depending on the application
fields. The quality attributes are the essential core that values
the quality and consistency of software over time. Allocating
reviewers based on quality attributes results in more efficient
task allocation among reviewers and improves software quality
in the long run.

As code check-ins include modifications or new function-
alities, the system architecture may be impacted. Each code
check-in can be associated with one or more quality attributes.
As a result, architects will be able to define a more accurate
architectural structure in which code check-in modifications
are taken into account and linked to expected quality attributes.

We will build our own model using supervised learning
and validate its results’ using a supervised training model
from a platform called Monkey-Learn. Monkey-Learn is an
artificial intelligent platform offers a text analysis model using
”supervised learning”. Monkey-Learn model was trained with
1,000 data points to verify and compare it with our own model
results. Both models will be thoroughly described later.

Researchers have used several approaches for code reviewer
recommendation. We have studied a variety of research papers
[1]. Numerous methods for automating source code reviewers’
recommendations have been developed over time [2]–[6].
Based on the primary features they take into account and the
methods they adopt to suggest code reviewers, we summarized
the most pertinent existing recommendation algorithms into
four groups:

• Heuristic
• Machine Learning
• Social Networks
• Hybrid approaches

A. Heuristic Algorithms

To identify the most pertinent code reviewers, tradi-
tional recommendation approaches analyze data from previous
project reviews and employ heuristic-based algorithms. The

three main algorithms are Code Reviewer Recommendation
based on Cross-project and Technology experience (COR-
RECT) [3], ReviewBot [5], and RevFinder [2] [7]. Assump-
tions for factors that associating the existing reviewed commits
and to-be reviewed commits in the category of Heuristic
Algorithms include: Expertise Assumption, Familiarity As-
sumption, and File location.

Expertise Assumption: In the proposed CORRECT system
[3], the underlying principle is that the reviewers of the prior
pull request are also suitable candidates for the current one
if the previous pull request used a similar external library or
technology.

Familiarity Assumption:A method called ReviewBot has
been put forth by Balachandran [5]. It is a code reviewer
recommendation method based primarily on the idea that lines
of code modified in the pull request ought to be reviewed by
the same code reviewers who previously discussed or modified
those lines of code.

File Location: RevFinder [2] is based on the location of
the files that are part of pull requests. The Code Reviewers
Ranking Algorithm is the first component of the RevFinder
approach. It employs four string comparison techniques to
compare the file paths in a new pull request with all the
file paths that have already been reviewed (Longest Common
Prefix, Longest Common Suffix, Longest Common Substring
and Longest Common Subsequence). Candidates for code
reviewers are given points in this step. The number of points
given to the code reviewers who previously reviewed the
files increases in proportion to how similar the file paths are.
The Borda count combination method is used to combine the
outcomes of each of the four string comparison techniques.

B. Machine Learning Based Algorithms

Machine Learning based algorithms recommend code re-
viewers using a variety of machine learning approaches. They
differ from the previous group primarily because they must
first construct a model based on training data. The authors of
”Predicting Reviewers and Acceptance of Patches” [6] employ
the Bayesian Network technique to forecast reviewers and
patch acceptance based on a number of features, including
patch meta-data, patch content, and bug report details.

C. Social Networks Assisted Algorithms

Social networks have also been used to identify communi-
cation patterns among developers, resulting in the recommen-
dation of candidates for source code reviews who are more
likely to be similar.

By examining the social connections between contributors
and developers, [4] proposed the Comment Network (CN)
approach as a method for recommending code reviewers.
The foundation of CN-based recommendations is the notion
that it is possible to infer developers’ interests from their
interactions with comments. As mentioned in [4], appropriate
code reviewers are developers who have similar interests to
the person who created a pull request.

D. Hybrid Approaches

This group of algorithms combines various techniques
(machine learning, social network analysis) to suggest code
reviewers. The work in [7] is an illustration of this approach.

In the past, sentence embeddings have been the subject of
in-depth research. Each approach has a unique approach to
solving the problem. For instance, Skip-Thought [8] uses an
encoder-decoder architecture to determine how the sentences
around it relate to one another. While InferSent [?] makes
use of a max-pooling layer and a Siamese BiLSTM network.
Even though the SkipThought method is effective, InferSent
consistently outperforms it [?]. The Universal Sentence En-
coder [?] combines unsupervised training with SNLI training
to train a transformer network. On the STS benchmark dataset,
a combination of Siamese DAN and Siamese Transformer
networks produced good results [?].

Adapting the deployment scenario is a significant challenge
when deploying the current code review assignment algo-
rithms. The assumptions in the use scenario must be met
for the heuristic algorithms to be accurate. A wide range of
algorithms are covered by machine learning techniques. To
achieve the anticipated accuracy, the training dataset must
also meet certain requirements. However, it may be deceptive
and constrained by privacy concerns. Social networks offer
strong pivots for reviewers selection with the rich information
in their profiles, networks, and activities. For many condi-
tions, hybrid approaches that combine the benefits of the
models described above are used more frequently. Due to
their complex architecture and the diversity of the developer
and reviewer community, large scale open source systems
pose the greatest challenge among use cases and existing
techniques. The challenges couldn’t be fully addressed by any
of the earlier algorithms. Another obstacle is the need for
non-functional quality attributes like security, modifiability,
and ongoing development, where reviewers’ experience and
knowledge are crucial to the software stack’s quality. Certain
software stacks function as vital infrastructures. For example,
in 5th Generation Cellular Communications software defined
radio platforms like Open Air Interface (OAI) [] [?], srsRAN
[?].

Thus in this paper, we presented an innovative code review
assignment system that consider both functioning and non-
functioning features of a commit for reviewer allocation. The
proposed system addressed the challenges in large scale open
source software stack. The main contribution of this study
includes:

1) A proposed quality-attribute based intelligent code-
review assignment system that addressed the challenges
in large-scale open-source software stacks.

2) The study integrated both supervised learning-based
and unsupervised learning-based algorithms with self-
learning capability to improve the learning accuracy over
the time.

3) Customized NLP models and transform learning scheme
are developed for quality attributes abstraction from the

commit message. Both commercial platform and in-
house developed models are explored and compared.

4) A modified version of the masked and permuted lan-
guage modeling (MPNet) is designed and implemented
aiming to determine the quality attributes for a specific
commit message.

5) UMAP-based algorithm is used for identifying relative-
position of the classification results of commit messages.
The shortest Euclidean distance between the calculated
point and the centroid point for each user is then used to
characterize the reviewers specialty and assign the target
commits to the matching reviewers.

6) The proposed system provides enhancement for the
coherence in development process, and significantly
reduces the development and maintainers cost through
out the product life cycle. It allows an intelligent and
efficient tasks allocation, which leads to improvement in
code quality and reduce potential risks due to improper
reviewing process.

The rest of the paper is organized as follows. We first
introduced the backgrounds and basic components that serves
as the foundation of the proposed system in Section II. We
then described our proposed system in Section III, followed
by the system performance assessment at Section IV. Finally,
the conclusion and future work is presented in Section V.

II. BACKGROUNDS AND BASIC COMPONENTS

In this section, we go over the fundamentals of intelligent
code review and automatic reviewer assignments. We first
describe natural language processing (NLP) keyword abstrac-
tion scheme exploring existing commercial NLP platform that
can be leveraged. We then discussed models that uses Trans-
formers in NLP. To build in-house customizable classification
model, we have developed transfer learning model based on
a SBERT model named MPNet [?]. At last, we presented the
Clustering methods used for reviewer matching to build our
proposed systems.

A. NLP Based Quality Attributes Annotation and Classifica-
tion Using Monkey-Learn platform

Monkey-Learn is a user-friendly artificial intelligence plat-
form that offers a ready-to-train text analysis model without
any coding skills. This platform is based on supervised learn-
ing which requires user annotation. Due to its many cost-
effective pricing options for product teams and developers and
high quality performance, Monkey-Learn is widely used in the
industry [9].

In this study, We have utilized the text analyzer’s free trial
plan, which offers 1,000 training data and 1,000 outputs each
month and compared with our in-house classification models.

B. Transformers Deep Learning Model in NLP

Transformer models are useful in transfer learning from
a large-scale LM (Language Model), which have been pre-
trained on a significant amount of text for conceptual tasks,
such as sentiment analysis and even predictive analysis. A

transformer is a deep learning model that uses the self-
attention process and weights the importance of each compo-
nent of the input data differently [?]. The goal of transformer
architecture is to account for the distant relationships between
words with ease while solving sequential problems.

In contrast, alternative models which are available for cre-
ating information-rich representations of sentences and para-
graphs are sentence transformers. These models are trained
using a number of techniques, but the unsupervised pre-
training of a transformer model using techniques like masked-
language modeling is the first step.

Because BERT [?] fails to account for dependency among
predicted tokens we use MPNet for transfer learning. In order
to make the most of the dependencies between predicted
tokens, MPNet employs permuted language modeling. It also
uses auxiliary position information as input to help the model
recognize complete sentences, which lowers position discrep-
ancy. The primary advantage of MPNet over BERT is that
it uses more information when predicting a masked token,
resulting in better representations while learning and less
discrepancy with the downstream tasks. Since BERT ignores
the relationships between predicted tokens, XLNet [10] in-
troduces permuted language modeling (PLM) for pre-training
to address this issue. However, XLNet suffers from position
discrepancy between pre-training and fine-tuning because it
does not fully exploit the position information contained
in a sentence. MPNet inherits the benefits of BERT and
XLNet while avoiding their drawbacks. In contrast to MLM
in BERT, MPNet uses permuted language modeling to take
advantage of the dependencies between predicted tokens. It
also uses auxiliary position information as input to help the
model perceive a full sentence, thereby minimizing position
discrepancies. According to experimental findings, MPNet
significantly outperforms MLM and PLM on these tasks and
outperforms earlier state-of-the-art pre-trained methods (such
as BERT, XLNet, and RoBERTa) when used in the same model
setting [?].

III. SYSTEM DESCRIPTION

The objective of the proposed system is establish an self-
learning, and self-correct platform for intelligently code review
assignments to match between a commit based on its quality
attributes and the skills sets of reviewers. The primary target-
ing software stacks are large scale open source software stacks
where the modifiability, reliability and security significantly
influence the quality if software stack or delivered system.
The challenges of code review assignment in such systems
include cross functioning designs and collaborations among
multiple developers or teams, which requires the reviewers’
expertise in both domain knowledge and non-functioning
software architectures.

Quality attributes servers as the connection among the user
requirements, delivered function description, software archi-
tecture and implementation through put the entire software
stack cycle. Thus, in our proposed system, quality attributes
are classified and abstracted from the commit messages and

based on which, the commits are assigned to the reviewers
with the capability in reviewing the target commits.

In Fig.1, we have described the overall system design
and implementation, including multiple independent modules
and interfaces bridging the modules. We start by selecting
OpenStack as our preferred software stack. Next, we divide
the collected data samples into commits and reviewer histories.
Preprocessing is done on the data obtained from the commit
samples for training and testing. The MonkeyLearn and the
MPNet models receive the annotated data samples as input.
For every commit, these models predict the quality attribute.
For dimensionality reduction, the output is fed to the UMAP
model along with the commit reviewer data. The plot contain-
ing the centroid coordinates for the top reviewers and each
commit sample is created using the 2-D points of the output.
After that, we determine the Euclidean distance to compare
the reviewers to the commits. In order to assign the reviewers
in an intelligent manner, we take into consideration external
factors like domain expertise, team members, etc.

Fig. 1. System Overview

A. Data Collection

The code review process of the OpenStack is based on Ger-
rit1, collaborative code review framework allowing developers
to directly tag submitted code changes and request its assign-
ment to a reviewer. Generally, a code change author opens a
code review request containing a title, a detailed description of
the code change being submitted, written in natural language,
along with the current code changes annotated. Once the
review request is submitted, it appears in the requests backlog,
open for reviewers to choose. Once reviewers are assigned
to the review request, they inspect the proposed changes and
comment on the review request’s thread, to start a discussion
with the author.

We mined code review data using the RESTful API2

provided by Gerrit, which returns the results in a JSON format.
We used a script to automatically mine the review data and
store them in SQLite database. All collected reviews are
closed (i.e., having a status of either ‘Merged‘ or ‘Aban-
doned’).

B. Experiment Setup and Annotation

First, we established the tags of annotation on both Monkey-
Learn platform and our models. The following tags have

1https://www.gerritcodereview.com/
2https://gerrit-review.googlesource.com/Documentation/rest-

apichanges.html

been used: Documentation related, Performance improvement,
Test coverage or Improve test-ability, Security enhancement,
Improve Availability, Improve usability, Achieving interoper-
ability, Improving modifiability.We began the training process
after identifying the tags. With 1,000 check-in data, we
trained the model with manually assigned quality attribute(s).
Monkey-Learn tracked our behavior to identify a pattern that
can be used to categorize the data going forward. The model
carried out this process by identifying words that are related
to the same tagged quality attribute in the classified check-ins.

The model is now ready to receive an input, process it, and
produce an output. Based on the identified patterns during the
training process, Monkey-Learn will produce a list of words
associated with each tag. The input text will be automatically
analyzed by the model and assigned one or more tags.

The model has phases for building, training, and running.
Duplication is removed from the data during the preparation
phase. No ambiguous commits were removed, and no typos
or grammatical errors were fixed. Eight tags were defined,
and the text may fit into one or more of these groups:
Documentation related, Performance improvement, Test cov-
erage or Improve test-ability, Security enhancement, Improve
Availability, Improve usability, Achieving interoperability, and
Improving modifiability. We uploaded 1,000 commits for train-
ing purpose. The trained data includes the subject and check-
in code descriptions, which are required to extract the quality
attribute. To create a classification model, the monkey-learn
model is fed training data that consists of pairs of code-check-
ins (title and description) and tags/labels (security, availability,
usability, etc.). During the training phase, each of the 1,000
commits is assigned one or more labels. The machine learning
model can begin to make accurate predictions once it has been
trained with enough training samples and will determine which
tags are associated with each input. But it is imperative to use
data other than the trained data to accurately test whether the
model is working properly.

In Fig.2, we find that most of the data were related to
documentation, improve availability and Testing.

Fig. 2. Texts percentage per each tag for 1K data

In Fig.3, a few tags were having less training data which
made it more challenging to have correct output related to

them while testing.

Fig. 3. Number of texts per each tag

Several commits included a description indicating that de-
velopment bugs were fixed. Those commits were skipped and
did not contribute to the 1,000 tagged data. We were unable
to assign them to a specific quality attribute.

Fig.4, shows overall statistics for Monkey Learn model with
an Accuracy of 71% and F1 Score of 77%.

Fig. 4. Monkey Learn model statistics

C. Development of SBERT Model for Quality-Attribute Based
Classification and Clustering

SBERT employs a Siamese architecture wherein it com-
prises two similar BERT architectures and shares their weights.
It processes two sentences [?] as pairs during training. Let us
assume that in SBERT, sentence A is fed to BERT A and
sentence B is fed to BERT B. Sentence embeddings from
each BERT model are combined. While the original study
paper evaluated several pooling strategies, they discovered
mean-pooling to be the most effective option. Mean pooling
is a method for generalizing features in a network which
operates by averaging the sets of characteristics from the
BERT network.

We now have two embeddings, one for sentence A and
one for sentence B, after the pooling is complete. The two
embeddings are combined by SBERT during model training,
after which a SoftMax classifier and a SoftMax-loss function
[?] are used to train the model. The two embeddings are then
compared using a cosine similarity function, which generates
a similarity score for the two sentences, at inference, or when
the model starts predicting.

The objective function for classification [?] uses the sen-
tence embeddings u and v, and concatenate them with the

Fig. 5. SBERT Architecture

element-wise difference and multiply them by the trainable
weight

Wt ∈ R3n×k

o = softmax

(Wt(u, v, |u− v|))

where n denotes the size of the sentence embeddings and k
denotes the number of labels Cross-entropy loss is optimized.
Fig.6 depicts the structure of both of the model.

Fig. 6. The flowchart for the models

Our code reviewer recommendation model, using historical
code reviews, examines how frequently the recommended
reviewers were the actual reviewers for each quality attribute.
However, we are going to assume that the reviewer assignment
in the past was correct.

TABLE I
HYPERPARAMETERS

Name Value
MAX LENGTH 512
TRAINING BATCH SIZE 32
VALIDATION BATCH SIZE 32
EPOCHS 40
LEARNING RATE 1e-05

IV. SYSTEM PERFORMANCE

We get an accuracy of 79.291 percent and an F-1 score of
85.31 percent when we use the MPNet-based model to make
predictions. The accuracy rises to 84.89 percent when the first
two tags predicted by the model are considered, and to 87.5
percent when the first three tags predicted by the model are
considered.

TABLE II
METRICS

Name Value
Accuracy 0.79291
Precision 0.8824
Recall 0.8257
F1 score 0.8531

For each of the quality attributes, the model determines
the confidence levels. The values of the prediction vector and
the value of the quality attribute for each row are chosen in
order to further visualize the results. These values are then
fed into the UMAP and T-SNE algorithms as shown in Fig.7
and Fig.8 respectively, which produce the 2-D coordinates for
the commit messages. An 8-D vector is reduced to a 2-D
vector in the process. We discovered that the UMAP algorithm
produces better clustering of our data when we compare the
visualizations. As a result, we assign reviewers based on the
coordinates generated by the UMAP clustering.

Fig. 7. T-SNE clustering

The centroid points in Fig.9 are then calculated for the
top twenty reviewers who are not part of a team of multiple
reviewers. This makes it easier for us to assign commits to
reviewers for review. The Euclidean distance is used to predict
which commit should be assigned to those reviewers. The
distribution is depicted in Fig.10

Fig. 8. UMAP clustering

Fig. 9. Centroid for the users

Fig. 10. Number of predicted commits

V. CONCLUSION

Without code review, the modern software development
process cannot be accomplished. It ensures that the entire
process is coherent, and improves the code quality, while
lowering the overall cost of the software. Finding the ideal
code reviewer is challenging. This can take a lot of time, and
improper task distribution could end up costing the project a
lot of money. Additionally, the reviewers’ workloads might not
be distributed equally, which could put more of a burden on
a select few. In order to find the best candidate for reviewing
open pull requests, we have come up with our own custom
model.

To address the issues with large-scale open-source software
stacks, we proposed an intelligent code-review assignment
system that is based on quality attributes. For increasing the
learning accuracy over time, the proposed platform combined
supervised learning-based and unsupervised learning-based
algorithms with self-learning capabilities. A modified version
of the MPNet model was created and put into practice with
the intention of identifying the qualities of a given commit
message. After that, a UMAP-based algorithm was used to
determine the relative position of the commit message with
respect to the classification results. The reviewers’ expertise
are then predicted and the target commits are assigned to
the matching reviewers using the shortest Euclidean distance
between the calculated point and the centroid point for each
reviewer.

At the end of this study, we found that the two models
performed admirably at classifying code commits according
to their quality attributes. With the data that has been given
to it, the proprietary Monkey-Learn model functions well, but
it has a number of restrictions. For instance, it was unable to
provide us with the probabilities for each of the eight quality
attributes. Because of this, it was difficult to determine the
two-dimensional coordinates for the commits. The MPNet-
based model, however, performed better in terms of accuracy
and flexibility. It could provide us with the eight-dimensional
vector values to calculate the coordinates for reviewer as-
signment, and was 11.7% more accurate than the proprietary
solution. When considering the F1 score, the MPNet-based
model outperformed the monkey-learn model by a margin of
10.8%.

VI. FUTURE WORK

In this paper, we show that the MPNet-based transformer
model can predict the reviewers who will be able to effectively
address the pull request and can account for the complex
interactive patterns between the entities in the code review
ecosystem. While the data from the OpenStack code repository
shows promise, we think that by training the model on the
data unique to any other repository will be useful in making
recommendations. The model can be used by any project
to streamline their workflow because it is quite generic and
can be trained on any dataset made available to it. Here,
we primarily focused on the relationship between the commit
messages in the OpenStack code repository and the quality
attributes. The files and directory where the changes were
made were not taken into consideration. The model may
learn intricate patterns in the data by keeping track of those
features, increasing the accuracy of selecting the reviewers.
Additionally, we think that a thorough examination of the
hyperparameters would result in greater accuracy. In our future
work, we want to examine the effect of these parameters on
the overall behavior of the model.

REFERENCES

[1] Jiyang Zhang, Chandra Maddil, Ram Bairi, Christian Bird, Ujjwal
Raizada, Apoorva Agrawal, Yamini Jhawar, Kim Herzig, and Arie

van Deursen, “Using Large-scale Heterogeneous Graph Representation-
Learning for Code Review Recommendations,” in arXiv:2202.02385v2,
vol. 2657. CEUR-WS, 2022, pp. 1–9.

[2] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. I. Matsumoto, “Who should review my code? A file location-
based code-reviewer recommendation approach for Modern Code Re-
view,” in 2015 IEEE 22nd International Conference on Software Anal-
ysis, Evolution, and Reengineering, SANER 2015 - Proceedings, 2015.

[3] M. M. Rahman, C. K. Roy, and J. A. Collins, “CoRReCT: Code reviewer
recommendation in GitHub based on cross-project and technology
experience,” in Proceedings - International Conference on Software
Engineering, 2016.

[4] Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?” Information and Software Technology, vol. 74, 2016.

[5] V. Balachandran, “Reducing human effort and improving quality in
peer code reviews using automatic static analysis and reviewer rec-
ommendation,” in Proceedings - International Conference on Software
Engineering, 2013.

[6] G. Jeong, S. Kim, and T. Zimmermann, “Improving code review by
predicting reviewers and acceptance of patches,” Research on Software,
2009.

[7] J. Jiang, J. H. He, and X. Y. Chen, “CoreDevRec: Automatic Core
Member Recommendation for Contribution Evaluation,” Journal of
Computer Science and Technology, vol. 30, no. 5, 2015.

[8] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun,
and S. Fidler, “Skip-thought vectors,” in Advances in Neural Information
Processing Systems, vol. 2015-January, 2015.

[9] Y. Ren, J. Fan, and B. Zhou, “Autolibrary - a personal digital library
to find related works via text analyzer.” [Online]. Available: https:
//dsc-capstone.github.io/projects-2020-2021/reports/project 39.pdf

[10] P. Yang, Y. Xiao, M. Xiao, and S. Li, “6G Wireless Communications:
Vision and Potential Techniques,” IEEE Network, vol. 33, no. 4, 2019.

