
Cultivating Software Quality Improvement in the
Classroom: An Experience with ChatGPT

Eman Abdullah AlOmar∗, Mohamed Wiem Mkaouer†
∗Software Engineering Department, Stevens Institute of Technology, Hoboken, NJ, USA

†Computer Science Department, University of Michigan-Flint, Flint, MI, USA
ealomar@stevens.edu, mmkaouer@umich.edu

Abstract—Large Language Models (LLMs), like ChatGPT,
have gained widespread popularity and usage in various software
engineering tasks, including programming, testing, code review,
and program comprehension. However, their effectiveness in
improving software quality in the classroom remains uncertain.
In this paper, our aim is to shed light on our experience in
teaching the use of Programming Mistake Detector (PMD) to
cultivate a bugfix culture and leverage LLMs to improve software
quality in educational settings. This paper discusses the results of
an experiment involving 102 submissions that carried out a code
review activity of 1,230 rules. Our quantitative and qualitative
analysis reveals that a set of PMD quality issues influences the
acceptance or rejection of the issues, and design-related categories
that take longer to resolve. Although students acknowledge the
potential of using ChatGPT during code review, some skepticism
persists. We envision our findings to enable educators to support
students with code review strategies to raise students’ awareness
about LLMs and promote software quality in education.

Index Terms—large language models, education, bugfix, code
quality

I. INTRODUCTION

Linting is one of the code inspection practices in which
developers leverage static analysis to identify bad coding
patterns, also known as issues. These issues have been known
to hinder code quality, making it harder to understand and
more prone to errors. Since their inception, linters have been
introduced early to students, as part of conceptualizing the
avoidance of bad programming practices [17]. Yet, linters
output is in the form of warnings with no recommended fix.
Due to the non-actionable nature of these warnings [25], and
the lack of their comprehension [24], many developers end up
considering them as false positives [12].

However, the rise of Large Language Models (LLMs), such
as the Generative Pre-trained Transformer, which is the core
model behind ChatGPT, has gained popularity due to its
generative ability to create responses and design solutions
for various input problems. Therefore, the use of ChatGPT
in education has become an area of debate about its oppor-
tunities and threats to student learning [18]. Given the wide
applications of LLMs in source code, including code quality
[22], programming [4], bug management [11], and program
comprehension [15], it presents an opportunity to bridge the
gap between developers and the proper adoption of static
analysis. In this context, little is known about ChatGPT’s
ability to help students effectively comprehend and address
static analysis outcomes, as part of learning code inspection.

In this paper, we reflect on the experience of integrating
ChatGPT in the code linting process, to support students with
their task of debugging and improving the quality of exist-
ing systems. Specifically, students are instructed to leverage
PMD1, a state-of-the-art static analysis plugin, to inspect an
open source system (code that is not theirs) and identify
potential issues belonging to several categories (‘Documen-
tation’, ‘Design’, ‘Security’, etc.). Then, for each identified
issue, the student needs to discuss whether it is worth fixing,
and so, a corrective action, in the form of a code change,
is provided. The student is allowed to use ChatGPT as an
assistant when reasoning over the decision of whether to fix
an issue and how it should be addressed. In other terms,
the language model explainable ability is solicited, along
with code generation and debugging. These experiments aim
to achieve pedagogical goals related to developing students’
code debugging capabilities, which are generally known to be
learned in industry [14]. It also familiarizes students with bad
coding practices and how to refactor them. Furthermore, it
trains students not only to use ChatGPT, but also to review its
recommendations, and reason over their validity, with respect
to analyzed code, before making a decision of whether and
how it should be fixed. This last goal is of particular interest
to us, as it gradually elevates students’ inherent assumption of
ChatGPT’s ability to hold the ground truth. In fact, students
experience how the language model’s code suggestions may
not address the issues reported by the PMD tool.

This paper contributes to promoting the wider acceptance
of static analysis warnings and leveraging LLMs to improve
software quality in educational settings by (i) designing a prac-
tical assignment for improving the quality of software systems,
and (ii) reporting the experience of using the PMD tool and
ChatGPT in software quality assurance course that has been
taken by 102 undergraduate and graduate students. As part
of the contributions of this paper, we provide the assignment
description and the tool documentation for educators to adopt
and extend2.

The remainder of this paper is organized as follows. Section
II outlines our experimental setup. Section III discusses our
findings, while the reflection is discussed in Section IV.
Section V reviews the existing studies. Section VI captures

1https://pmd.sourceforge.io
2https://refactorings.github.io/education/

20
24

 3
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g
Ed

uc
at

io
n

an
d

Tr
ai

ni
ng

 (C
SE

E&
T)

 |
 9

79
-8

-3
50

3-
78

97
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
EE

T6
23

01
.2

02
4.

10
66

30
28

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

Code Style

Best Practices

Design

Error Prone

Documentation

Multithreading

Performance

Security

Java project selection PMD code inspection ChatGPT code inspection Quality improvement SurveyClass lecture

Quality

Bug

Refactoring

Code smell

Figure 1: Key phases of our study.

any threats to the validity of our work, before concluding with
Section VII.

II. STUDY DESIGN

A. Goal & Research Questions

We formulate the main objective of our study based on the
Goal Question Metric template [20], as follows:

Analyze the use of PMD for the purpose of cultivating
the culture of bug fix and demonstrating a practi-
cal case study of leveraging Large Language Models
(LLMs) with respect to support educating software
quality from the point view of educators in the context
of undergraduate and graduate students in SE/CS who
analyze Java-based software projects.

According to our goal, our aim is to answer the following
research questions:

• RQ1. What PMD-related problems are typically selected
by students?
Motivation: This RQ explores what type of issues stu-
dents are addressing using the help of the model.
Measurement: We report the types of issues that are being
addressed, clustered by PMD ruleset categories.

• RQ2. What type of issues typically takes longer to be
fixed?
Motivation: This RQ investigates which PMD ruleset
takes a longer time to be fixed by students despite the use
of ChatGPT. The finding raises educators’ awareness of
types of issues that are difficult for students to understand
and address.
Measurement: We examine the resolution time taken by
students to fix each ruleset category.

• RQ3. To what extent was ChatGPT successful in
addressing the students’ debugging needs?
Motivation: This RQ explores the ability of the language
model to correctly explain the rationale of errors, and to
provide potential code fixes when requested. The findings
will inform educators about how ChatGPT can support
students with code improvement.

Measurement: We examine students’ feedback to extract
the necessary ratios of the language model’s success in
addressing their queries.

As part of this paper’s contributions, we provide the as-
signment description, dataset, and tool documentation for
educators to adopt and extend3.

B. Course Overview

Software quality assurance is an undergraduate and graduate
course consisting of two weekly lectures, one hour and 15
minutes each. The course explores the foundations of software
quality and maintenance and introduces challenges linked to
various aspects of software evolution, along with support tools
to approach them. The course also covers various concepts re-
lated to software analysis and testing, along with practical tools
widely used as industry standards. Students were also given
several hands-on assignments on software quality metrics,
code refactoring, bug reporting, unit and mutation testing, and
technical debt management. The course deliverables consisted
of five individual homework assignments, a research paper
reading and presentation, and a long-term group project.

C. PMD

The Programming Mistake Detector (PMD) is an open-
source static source code analyzer. It inputs source code from
up to 16 languages and reports common programming issues,
such as unsafe threading, god classes, and naming conven-
tion violations. These issues are clustered into 8 categories,
namely: ‘Best Practices’, ‘Code Style’, ‘Design’, ‘Documen-
tation’, ‘Error Prone’, ‘Multithreading’, ‘Performance’, and
‘Security’. Each issue is identified using a detection rule. The
tool has become popular, as it can be integrated with modern
CI/CD servers.

D. Teaching Context and Participants

The study involves one assignment in the software quality
assurance course. The course was taught at Stevens Institute
of Technology and Rochester Institute of Technology. Before
conducting the assignment, students have already learned
about several code, and design quality concerns: (1) code qual-
ity (teaching quality concepts and how to measure software

3https://refactorings.github.io/education/

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

Figure 2: ChatGPT in action showing the resolution of ExcessiveMethodLength PMD issue.

quality), (2) code smells (teaching bad programming practices
that violate design principles), (3) code refactoring (teaching
refactoring recipes that help improving software quality), and
(4) bug management (teaching software bugs and how to locate
and fix them). The assignment constituted 7.5% of the final
grade. It was due 14 days after the four corresponding sessions.

In total, 102 students completed the assignment. The pro-
gramming experience of the respondents ranged from 1 to
more than 10 years, their Java experience ranged from 1 to
10 years, and their industrial/coop experience ranged from 0
to more than 10 years.

E. Assignment Content and Format

Assignment Design. Initially, students are asked to analyze
one version of Java software approved by the instructor to en-
sure its eligibility based on popularity, in addition to ensuring
that it compiles correctly since PMD requires it. The rationale
behind giving students the choice of project is to let them
choose one that they are comfortable with and that fits their
interests. For students who do not want to search for a project,
they have been given a list that the instructor has already
curated (see Table I). We selected these projects because we
already know that they contain a variety of software defects.
The students are then asked to set up and run PMD to analyze
the chosen project production code. Students are also given
the choice of running either the stand-alone version of the
tool or its plugin associated with a popular IDE (Eclipse),
as we want the students to be familiar with the coding
environment and reduce the setup overhead. Upon running
PMD, students must choose a minimum of 10 warnings, and
at least one from each category, if applicable. We enforce
the diversification of warnings to ensure a wider exposure
to potential issues, varying from design to multithreading,
and documentation. It also increases students’ learning curve
as they cannot reuse their fix to address multiple instances
of the same warning. Yet, we allow students to choose the
instances they want to address. It implicitly makes students
read many warnings, from all categories, which increases the
likelihood of incidental learning. Furthermore, letting students
choose the code fragments to review increases their confidence
in their decision regarding the given warning. Finally, the
students use ChatGPT to fix PMD issues supported by an
online questionnaire. For our survey design, we followed the
guidelines proposed by Kitchenham and Pfleeger [13]. The

survey is divided into 2 parts. The first part of the survey
includes demographic questions about participants. In the
second part, we ask about their experience using ChatGPT to
fix PMD issues and the perceived usefulness of ChatGPT. As
suggested by Kitchenham and Pfleeger [13], we constructed
the survey using 6 open-ended questions and 16 multiple-
choice questions with an optional “Other” category, allowing
respondents to share thoughts not mentioned in the list.
Pilot Study. We conducted a pilot study with two students
to improve the instrumentation of the experiment and to
ensure that the experiment’s instructions were clear. Following
the pilot study, we interactively refined the protocol and
the assignment questions. The participants in the pilot study
are undergraduate students in Software Engineering. Among
others, we learned that prompt engineering is crucial when
using ChatGPT, and we decided to refine the survey questions
to better explore the topic. Therefore, we reformulated the
assignment and excluded the data from the pilot study from
our analysis.

In a nutshell, the students followed these steps:
1) Install the PMD.
2) Run PMD on a project of students’ choice and select 10

issues of different types.
3) Use ChatGPT to analyze the issues and decide on

whether to fix them and what is the appropriate code
change action.

4) Report the findings for each issue: (1) the source code,
(2) the type of issue, (3) how long it took to check it /
fix it, and (4) the code snippet.

5) Add to the report a concise comment on the experience
with ChatGPT (optional).

The evaluation of the artifacts of the submissions was based
on 1) the assessment of the students’ ability to understand
the type of issues (concept understanding); and 2) assessment
of whether students have provided acceptable fixes or proper
justification in both cases or accepted or rejected PMD’s
recommendation (program analysis and evolution). Students’
perception of the code was excluded from the evaluation
process, as it can bias the experiment, as students would be
filling out the survey arbitrarily, under the pressure of being
graded. Additionally, feedback was anonymous and was not
mandatory to increase the magnitude of PMD and ChatGPT
usage experience. Although feedback was optional, all students
completed it. Figure 1 shows an overview of the setup and

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

Table I: The list of open-source projects used in the
assignment.

Project # commits # contributors Domain

Ant 14,887 64 Java builder
GanttProject 4,361 38 Project management
Hutool 4,074 191 Code design
JCommander 1,009 64 Command line parsing
JFreeChart 4,218 24 Data visualization
JHotDraw 804 3 Data visualization
Log4J 12,211 137 Logging
Nutch 3,293 46 Web crawler
Rihno 4,119 80 Script builder
RxJava 6,004 289 Java VM
Xerces 6,463 5 XML parser

execution of our experiment.

F. ChatGPT Usage

Just like PMD, students were provided with the necessary
background training to use ChatGPT. Since we are interested
in students interaction with the language model, students
were clearly instructed to fully disclose the usage of the
tool through a given survey link. Figure 2 shows one of the
PMD issues when analyzing the GanttProject4. This issue
is called ExcessiveMethodLength, identified in the
paintCalendar201d(Graphics g) method in the
GanttGraphicArea.java file. PMD highlights this issue
with ‘Urgent’ violation due to its CognitiveComplexity
of 50, CyclomaticComplexity of 39, and
NPathComplexity of 1140, all of which surpass the
default acceptance threshold. ChatGPT indicates that
refactoring is required to split the lengthy method into
smaller and more manageable ones. It also provides a
suggested code fix. The student has the option to implement
the suggested fix if they agree with it. As shown in the
figure, when the proposed fix was adopted, it removed
CognitiveComplexity and NPathComplexity
issues, and reduced CyclomaticComplexity to 12.

III. RESULTS

A. What PMD-related problems are typically selected by stu-
dents?

Upon analyzing students’ assignment solutions, we cluster
the issues according to the PMD ruleset categories listed in
the PMD official documentation5, namely, ‘Best Practices’,
‘Code Style’, ‘Design’, ‘Documentation’, ‘Error Prone’, ‘Mul-
tithreading’, ‘Performance’, and ‘Security’. These categories
were captured at different levels of granularity (e.g., package,
class, method, and attributes).

Looking at the PMD rules, Figure 3 depicts the percentages
of PMD rules, clustered by category. As can be seen, the
most common PMD ruleset category concerns ‘Code Style’,
representing 32.3% of the issues. This observation is in line
with the findings of previous studies describing that most
code reviewers look for style conformance when evaluating

4https://github.com/bardsoftware/ganttproject
5https://pmd.sourceforge.io

Code Style
32.3%

Best Practices
21.1%

Design
17.4%

Error Prone
12.3%

Documentation 8.5%

Multithreading 1.7%

Performance 6.8%

Figure 3: What PMD-related category have you chosen?

Figure 4: Boxplots of time taken to fix issues, clustered by
PMD ruleset categories.

the quality of code [19]. The next most common categories
are ‘Best Practices’, ‘Design’, and ‘Error Prone’, representing
21.1%, 17.4%, and 12.3% of the issues, respectively. This
might indicate that students have different perspectives on
whether developers follow the best practices, improve the
architecture design of code, or make code less susceptible to
errors. The categories ‘Documentation’, ‘Performance’, and
‘Multithreading’ had the least number of issues, with a ratio
of 8.5%, 6.8%, and 1.7%, respectively.

Summary for RQ1: Among the 1,230 analyzed issues,
the most common PMD ruleset category concerns
‘Code Style’, representing 32.3% of the issues.

B. What type of issues typically takes longer to be fixed?

Figure 4 shows that issues belonging to the ‘Design’, ‘Error
Prone’, and ‘Best Practices’ categories (µ = 7.19, µ = 3.81,
and µ = 3.51, respectively) tend to be more time-consuming
for students to address. In particular, ‘Design’ issues have
a significant spike compared to all other types. When tak-
ing a deeper look at these issues, we noticed this pattern:
submissions where students could not receive support with
addressing some type of ‘Design’ issues, namely GodClass
issues. God Classes are known to be abnormally large, with
a concentration of various responsibilities, by controlling and

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

monitoring many other classes. Their existence hinders pro-
gram maintenance and comprehension [3]. We speculate that
design issues take significantly longer to be resolved due to
substantial modifications that must be made for God classes.
In fact, fixing a God class requires its decomposition into
multiple classes, which requires separating multiple tangled
concerns while maintaining their coupling to other classes.
The needed fix translates into a series of refactorings that go
beyond changing one or a few instructions, like when fixing
other types of issues. When analyzing students’ prompts for
fixing for God classes, we noticed that ChatGPT was unable
to propose a fix, mostly because the input windows of the
model cannot receive the needed set of instructions, which
represent the God class, and all its dependencies. providing
a snapshot of the God class code would not be sufficient
for the model to carry out a class extraction. The language
model was only able to provide examples of extract class
refactorings, for relatively smaller-scale classes. For instance,
Figure 5 exhibits ChatGPT’s response to a student query
asking to address a God Class issue, for a given input class.
In general, ChatGPT has input limitations when grasping the
various contexts in large code segments. Due to this limitation,
there have been instances where ChatGPT makes suggestions
based on misunderstandings or false assumptions about the
code. Through this experiment, students can experience how
ChatGPT performance varies based on the length of the input.
Increasing the input size can eventually lead to catastrophic
forgetting [10].

Figure 5: ChatGPT response to a student query to refactor a
God Class.

On the other hand, ChatGPT provided more positive an-
swers to student questions related to addressing issues when
they are located in a continuous set of instructions (single
location), such as CyclomaticComplexity. ChatGPT was
able to propose the extract method refactoring to break down
methods with a high cycomatic complexity score.

Summary for RQ2: ‘Design’ PMD ruleset category
takes longer to resolve. Unlike other PMD category,
this requires going beyond one or few instructions, and
ChatGPT has a limited understanding of the broader
context and entirety of the codebase.

C. To what extent was ChatGPT successful in addressing the
students’ debugging needs?

Figure 6 shows students’ experience with utilizing ChatGPT
in terms of four aspects: (1) the ChatGPT’s capability to
address issues, (2) the potential for ChatGPT to introduce
regression in the code, (3) the frequency of interaction with
ChatGPT for bug-fixing purposes, and (4) the possibility for

ChatGPT’s to introduce additional violations through PMD.
When we asked students, “Was ChatGPT able to fix the
buggy code?”, 85.9% of the students indicated that ChatGPT
can help with addressing the issues, while 14.1% of the
students responded negatively. Overall, students are satisfied
with ChatGPT’s support. In terms of causing regression in
the code, 79.6% of the students revealed that there is no
regression, while 20.4% of students experienced it. Regarding
the frequency of the usage and interaction with ChatGPT
before finding (or not) a fix to the buggy code, 40% used
it once, 21.3% used it twice. The remaining students (38.7%)
used ChatGPT between three and more than five times. As for
the potential to introduce additional violations through PMD,
the majority of students (86.4%) mentioned that ChatGPT does
not contain other errors detected by PMD, but some indicated
otherwise.

The success of using any language model heavily depends
on students’ ability to properly prompt it. Therefore, one of
these work’s outcomes is sensitizing students to the power of
prompt engineering in the context of debugging. As shown in
Figure 7, when analyzing the students initial prompts, 27.7%
of students revealed that they only copy-paste the buggy code
fragments, thinking that ChatGPT can identify the intention
behind prompting code. The majority of students (68.6%)
communicated that they copied the buggy code fragment along
with the error description to provide context for the pasted
code. 20.6% of students mentioned that they copy-paste the
buggy code fragment and added textual description of how to
fix it. A few students reported that they show pairs of buggy
and fixed code fragments and asked ChatGPT to do similar for
the given buggy code. Besides these activities, 2.9% of the
students mentioned in the “other” option: “asking ChatGPT
that the PMD violation still remained when it could not fix
the code”, “asking ChatGPT how to fix the error in general
before copy pasting the offending code”, “prompted ChatGPT
with the actual line that was causing the error and asked
it if there was something specific in the code segment that
could be optimized”, “asked ChatGPT to provide an example
of how a similar situation could be fixed”, and “ChatGPT
says this is a false positive and is descriptive of what the
variable is representing and I agree with it”. Figure 7 shows
how the students’ prompts are not uniform, where the majority
of students argue over how to extract the necessary action
from the models, while others overestimate the capabilities of
the model, as outlined in previous studies that have proven
that ChatGPT is susceptible to hallucination when it comes
to coding semantic structures [15], [22]. So, experiencing the
potentially inappropriate results of the model would raise the
students’ awareness of its limitations. In addition, it helps
students refine their prompts, as shown in Figure 6 where the
majority of students have used more than one prompt per issue
(60%).

Furthermore, 68.6% of the students’ prompts were zero-
shot, i.e., students rely on the generative ability of the model
to either understand an issue, or to propose its corresponding
code fix. Zero-shot learning challenges the model to make a

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

Yes
85.9%

No
14.1%

(a) Was ChatGPT generally
helpful in addressing PMD

issues?

Yes
20.4%

No
79.6%

(b) Did one of ChatGPT’s
proposed solutions cause
regression in the code?

1
40%

2
21.3%

3
11.3%

4
7.1%

5 or more
20.3%

(c) How many times have you
interacted with ChatGPT?

Yes
13.6%

No
86.4%

(d) Did the fix contain other
issues detected by PMD?

Figure 6: Student’s attitude toward utilizing ChatGPT for
bug resolution.

decision over presumably unseen data [23]. The model relies
on approximating the input with previously trained code. For
instance, as shown in Figure 8, the student asks the model to
reduce the cyclomatic complexity of an input source code.
The same prompt can be augmented by adding a label to
the unseen data, i.e., one-shot [8]. For example, in Figure 8,
mentioning how the reduction can be performed can guide
the model towards the decision to take (method extraction).
Other students opted for a few-shot learning by entering pairs
of buggy and fixed code fragments and asked ChatGPT to
propose similar fixes for an alternative buggy code. Few-shot
learning is a response when dealing with complex tasks, to
steer the model towards better decision making, by allowing
in-context learning from provided examples [21]. In Figure 8,
the input shows examples of code changes that address the
complexity of a given method.

Given the variety of prompts used, our activity has triggered
the students’ reasoning about how to query the model to
avoid its own inherent limitations. This also helps students
be critical of ChatGPT responses, and not treat them as
ground truth. For instance, 20.4% of students experienced
regression in their code base after using the code generated
by ChatGPT. Reported examples ranged from the introduction
of compiler errors to failing unit tests. Such problems can
be due to existing errors in the ChatGPT generated code or
due to the wrong integration of the fix by students into the
code base. It can also be eventually caused by an incorrect
student query. Although it would be interesting to dive into this
analysis more in-depth, our goal was to sensibilize students to
how the process of querying language models can be error-

Copy paste buggy
code fragment

Copy paste buggy
code fragment

& error description

Copy paste buggy
code fragment

& added textual
description of
how to fix it

Show pairs of buggy
& fixed code fragments,

& asked the model to
do the same thing

for a given buggy code

Other

0

10

20

30

40

50

60

70

27.7%

68.6%

20.6%

1.9% 2.9%

Figure 7: How did you use ChatGPT to fix buggy code?

prone, and thus it is critical to verify its outcomes before any
adoption. We also aimed to sensitize students to the existence
of multiple querying techniques, which are known in data
science curricula, without providing any prompt engineering
training.

In Table II, we report the main thoughts, comments, and
suggestions about the overall impression of the usefulness,
usability, functionality, and recommendation of the ChatGPT,
in accordance with the conducted labeling. The table also
presents samples of the students’ comments to illustrate their
impressions of each theme.

Usefulness. Generally, the respondents found the ChatGPT
to be useful in regard to five main aspects: automation,
quality, scope, awareness, and experience. A group of students
commented on ChatGPT’s ability to automatically fix bugs,
its affordability, capacity for automating tedious debugging
and bug fixing processes, and ability to deliver precise and
thorough responses. Nearly 85.9% of the students commented
that ChatGPT is useful as it gives explanations as to what the
problem was and the suggestions to fix it. Further, 23.22% of
students commented that it is a nice application and provides
a good learning experience especially for those who are
beginners in software quality and debugging. Some students
(20.64%) revealed that ChatGPT was fast in terms of analyzing
issues located in contiguous instructions, but not for identify-
ing larger issues such as GodClass and DataClass. 4.5%
of students communicated that detecting the issues assists in
increasing its readability, which helps improve overall code
quality.

Usability. Based on the feedback the students provided, the
key usability areas were documentation, ease of use, explain-
ability and user interface. 28.38% of the students pointed out

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

Zero-shot learning:

You are a Java expert. How do I fix this section
of code that has a cyclomatic complexity of 21:
“‘ Original code ”’

One-shot learning:

You are a Java expert. Can you fix this section
of code that has a cyclomatic complexity of 21 by
breaking down the code into smaller methods:
“‘ Original code ”’

Few-shot learning:

You are a Java expert. I provide you with a pair
of fixed and buggy code fragments, and I request that
you apply similar fixes to a newly given buggy code.

An example of buggy code that has a cyclomatic
complexity of 21:
“‘ Original buggy code ”’

An example of fixed:
“‘ Original fixed code ”’

Here is the newly buggy code, please propose
similar fixes for this buggy code:
“‘ Newly buggy code ”’

Figure 8: Different types of learning settings used by students
when prompting ChatGPT in the context of debugging.

that the tool is easy to use, has a user-friendly interface, and
explains how it generated each bugfix and how to avoid that
issue in the future. Other comments also stated that using these
LLMs requires to carefully adjust the model’s output. It lacks
originality and might give biased output.

Functionality. According to the students’ feedback about
the tool’s functional features, 16.77% of the students’ com-
ments appreciate ChatGPT’s correction, detection, and debug-
ging functionality and are satisfied with various aspects of the
tool’s operation, and how this feature helps to understand bad
programming practices in real-world scenarios better. Addi-
tionally, the students commented on their ability to practice a
variety of strategies to eliminate issues.

Recommendation. From the students’ feedback, we have
also extracted suggestions to improve the LLMs. 3.8% of
the students’ comments show a couple of suggested changes
as a recommendation to be made to the tool’s operation.

We extracted a set of recommendations related to context,
promptness, accuracy, resolution, and verification. Students
commented that it is undeniable that ChatGPT’s capabilities
have the potential to transform the programming process for
developers. With its remarkable ability to generate multiple
solutions to a problem and adapt to a developer’s preferred
approach. Others pointed out how ChatGPT can eventually
hamper the creativity of developers. Students anticipate that
ChatGPT will revolutionize the way developers approach
coding in the future. Other students felt that ChatGPT could
quickly fix language-specific coding errors, along with PMD
default issue descriptions, when they are well explained.
But when the errors are propagated or occur in multiple
locations, the students had difficulty querying the model.
These limitations can be mitigated through formal training
in prompt engineering. The fact that ChatGPT’s replies are
determined by the prompt it gets and the data it was trained
on could be a drawback as the quality of its responses are
highly dependent on the quality of the prompts. Its solutions
may not always be precise or appropriate for the particular
activity or topic. The students also mentioned that ChatGPT
is helpful in most situations. However, it struggles to solve
issues without context. For example, ChatGPT might find
the code comprehensive and easy to read, but when students
mention the problem with the code, it then recognizes the
issue. The more detailed the description, the more specific
and accurate the solution made by ChatGPT. However, some
issues require investigating various coupled files that may or
may not be present as part of the input. Therefore, even after
inputting a proper description of the buggy code, there are no
guarantees on the model’s ability to debug. Aside from the
detailed description of the issue, providing the most relevant
code fragments is key to avoid dragging ChatGPT attention to
either unnecessary details or bug-free code fragments.

Summary for RQ3: Overall, this assignment helps cul-
tivate analytical and critical thinking skills as students
engage in the debugging process. In addition, it teaches
students to be skeptical towards the use of ChatGPT by
shedding light on the limitations of ChatGPT in identi-
fying and solving problems. It highlights the importance
of incorporating other traditional static analysis tools
and techniques to improve the accuracy and efficiency
of their predictions. Furthermore, the involvement of
a human-in-the-loop, capable of comprehending code,
can be highly valuable and desirable.

IV. REFLECTION

This section provides the lessons learned from both the
educator’s and the student’s perspectives.
à Lesson #1: Develop complementary assignments. Chat-

GPT identified each of the PMD violations and attempted to
fix them. In some cases, this would cause the problem to
vanish completely from the PMD analyzer. In other cases,

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

Table II: Student’s insight about the usefulness, usability and functionality of ChatGPT.

Theme Sub-theme Example (Excerpts from a related student’s comment)

Usefulness

Automation “The advantages of ChatGPT include its affordability, capacity for automating tedious processes, and ability to deliver precise and thorough
responses for customer service departments.”

Quality

“PMD is a useful tool that can help identify potential issues in code and provide suggestions for improvement. It can also help enforce
coding standards and best practices, leading to cleaner, more maintainable code. In my experience, both ChatGPT and PMD have been
valuable tools. ChatGPT has been able to quickly provide helpful responses to various questions, while PMD has been able to catch
potential issues that may have been missed during manual code reviews. However, it’s important to note that these tools should be used as
aids and not as replacements for human analysis and judgment. Overall, I believe that the use of AI language models and code analysis
tools like PMD can greatly benefit developers and lead to better code quality and efficiency.”

Scope

“ChatGPT was very informative about giving context and definitions of errors, and was even able to provide definitions and recommendations
specific to the PMD plugin. Negatives included when code errors were too vague or covered code segments that were too large for ChatGPT
to understand. I conclude that ChatGPT is useful for refactoring small segments of code like fixing errors in smaller methods, nested if
statements, and generally cleaning up the code to run faster, but not for larger issues like god classes.”

Awareness “ChatGPT was extremely useful. It had all of my answers I needed, and even was able to answer other questions for me. When it fixed
the code, it also gave explanations to each change it made to the code. Overall, ChatGPT was an extremely useful and easy to understand.”

Experience “The refactored code given by ChatGPT was bug free most of the time but at few times there were bugs in it . Overall the chatgpt is very
nice application specially for those who are begineers in software development and programming.”

Usability

Documentation
“My experience with ChatGPT was largely positive. The tool was able to quickly identify a range of issues in the codebase, including code
style issues, best practices, performance issues, and design problems. The reports generated by ChatGPT were very informative and easy
to understand, providing clear explanations of each issue and suggesting steps to fix them.”

Ease of use

“It was quite easy to fix errors using ChatGPT. The trick is to find the right prompt so that it understands what it needs to do quickly rather
than going around explaining the issue without providing the fix. However, since ChatGPT only had limited code visibility (the code snippet
provided by the user), it generated a few fixes which would break the code (ex change variable names, use packages without importing,
etc.). We can’t say that the code fix provided by ChatGPT was entirely wrong though. Overall, it is easy and quick to use ChatGPT to fix
most PMD Errors, with a little bit of oversight.”

Explanability “when you’re working on a small scale project it’s extremely useful. Can also explain basic concepts you might have forgotten very well.”

User interface
“Chatgpt has a user-friendly interface. It provides precise and thorough responses for customer service teams. However, there are also
potential disadvantages to using these models, such as the need to carefully adjust the model’s output. It lacks originality and might give
biased output.”

Functionality

Correction
“ChatGPT would sometimes misunderstand what error I was trying to indicate, or would be confused by the fact that I was giving it a
code excerpt rather than the full code, which was too large to provide to it. Its corrections sometimes also misunderstood the purpose of
an excerpt and would slightly alter the logic, but this was expected.”

Detection
“Overall I had a positive experience with ChatGPT as it was able to detect the errors that PMD reported. However for the last 5 code
segments I tested, it started generating code that produced compile errors and it didn’t always generate the code in java on the first few
attempts.”

Debugging
“ChatGPT is usually unable to identify the problems the pmd extension provides. However when it does it is able to go into great detail
about the problems, and either fix the problems entirely or give guidance as to how to fix them. I enjoy using chatgpt for debugging and
other things and I believe it is a great academic learning tool.”

Recommendation

Context

“ChatGPT was definitely helpful to fix errors. However, many errors required a lot more context than what chatgpt accepts and that
leads to incorrect fix or sometimes makes the problem worse. There is also the problem with it dropping context time and again. I feel
chatgpt is best considered as a supplement to the existing options like stackoverflow but cannot be blindly trusted. That being said it is still
a great upgrade from stackoverflow and may be in future be more accurate. Overall a positive experience.”

Promptness
“It was very useful, there was a bit of a learning curve as it took a few attempts to understand what exactly to prompt it to give you the
information you want to know. I had used it before so thats why I understood how to problem solve in that way but chat GPT its self
doesn’t really suggest other ways to prompt if it doesnt get enough to give an answer.”

Accuracy

“GPT is not primarily designed for debugging but can assist in identifying syntax errors and offering debugging strategies. It can also
suggest alternative solutions and offer insights into the program flow and potential issues. However, its suggestions may not always be
accurate, and it may not have a deep understanding of complex code structures, making it less effective for identifying all types of
errors.”

Resolution “While ChatGPT was able to identify issues in the code, it did not always provide suggestions for how to fix them. This meant that
developers still needed to have a good understanding of coding best practices in order to address the issues identified by ChatGPT.”

Verification

“ChatGPT is perfect as a code-companion but not as a replacement. The reason for this is because ChatGPT is unable to find context
of the applications of code. This makes it more prone to missing logical bugs like the fall-through of a switch-case statement. Having a
human-in-the-loop who is able to understand the applications and has a good idea of the overall structure of the project is much more
desirable.”

although a fix was applied, the PMD analyzer would still
detect the problem as present. ChatGPT re-edits the code when
prompted; sometimes, it will improve its response. However,
when given the same prompt multiple times, it will gener-
ate the same response with alteration after many attempts.
Therefore, students can use ChatGPT as a complementary
tool alongside traditional static analysis tools to improve the
efficiency of their software development process.

à Lesson #2: Limited understanding of the broader con-
text of the codebase. While ChatGPT was informative about
giving context and definitions of errors and could provide
specific recommendations for PMD violations, it has a limited
understanding of the broader context and the entire codebase,
which could lead to missing dependencies and codependen-
cies. Due to this limitation, there have been instances where
ChatGPT makes suggestions based on misunderstandings or
false assumptions about the code. This assignment reveals

this limitation in a practical manner to help students better
understand the mechanics of the model, rather than treating it
as a black box that autogenerates acceptable answers for any
given query. In this experiment, not only students could not
reach an acceptable answer for some queries, they also experi-
enced how suggested code changes can be even problematic,
as seen in Figure 6. Students experienced various negative
side-effects of the autogenerated code. For example, in some
cases, ChatGPT provided code has introduced compiler errors.
Also, some students reported that the suggested refactoring did
push some tests to fail, despite the fact that refactoring is sup-
posed to preserve the system’s internal behavior. Furthermore,
ChatGPT suggested a fix for the ‘Best Practices’ category;
but its solution has increased the cyclomatic complexity of the
method, probably due to the lack of context and explainability
of the code snippets. This observation is consistent with a
previous study [6] that found that bad warning messages and

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

no suggested fixes are some of the pain points reported by
industrial software developers when using program analyzers.

à Lesson #3: Verify ChatGPT’s responses with human ex-
pertise. While ChatGPT can provide some help in debugging,
it should not be relied on as the only debugging tool. ChatGPT
is perfect as a code companion, but not a replacement. The
reason for this is that ChatGPT cannot find the context of code
applications. Having a human-in-the-loop who can understand
the applications is much more desirable. Thus, experienced
developers and specialized debugging tools remain essential
for thorough and effective debugging.

à Lesson #4: Automate the debugging and bugfixing
process. ChatGPT is an effective tool for programmers seeking
assistance. Still, providing clear and detailed questions is
essential to get the most accurate and helpful responses. It has
helped students debug and clarify what each code segment did
and explain how it performed each bugfix. Thus, the process
is significantly shortened. Yet, in a few cases, it required some
experimentation before coming up with a set of questions to
accomplish the task. Additionally, it suggested changes that
caused compiler errors, e.g., renaming a variable in a field
declaration or fixing a different issue in the code instead of
the one given to analyze. Furthermore, ChatGPT tends to view
PMD-related stylistic or best practice issues as not problematic
and is too light handed in explaining the potential issues with
stylistic/best practice problems in the source code. In the real
world, this can lead to a student developing bad coding habits,
ultimately detrimental to the productivity of the individual and
the team they belong to. some of the flaws were observed with
inexplicable fixes or suggestions.

à Lesson #5: Improve ChatGPT’s accuracy and effec-
tiveness. ChatGPT was useful in solving a few PMD rule
violations and provided good recommendations for resolving
them. However, it cannot be determined as a PMD rule viola-
tion in a few cases, even though the code snippet is provided
with context. For a few violations, it answered as ’may’,
providing it satisfying given conditions since it only provided
the code snippet and not the surrounding code. We believe
that if ChatGPT is trained properly for the specific ruleset,
it can be used to quickly eliminate PMD rule violations.
Yet, one cannot highly rely only on ChatGPT; some level of
understanding and knowledge is required by the developer to
make the appropriate correction, since it sometimes generates
code that produces compile errors.

à Lesson #6: Handle complex code and errors. The
effectiveness of ChatGPT is closely related to the quality of
its training data set. According to the students’ comments,
ChatGPT provides high-level and valuable suggestions about
the bugs. For instance, it is useful in fixing non-pressing
matters such as code style, adding comments, making the
if statements more logical, etc. On the other hand, it would
sometimes misunderstand the error the student was trying to
indicate or would be confused by the fact that the input gave
it a code excerpt rather than the full code, which was too
large to provide. Its corrections sometimes also misunderstood
the purpose of an excerpt and would slightly alter the logic.

Therefore, the more complex the given code input, the more
likely the code output will not work properly.

V. RELATED WORK

Biswas [4] discussed an overview of ChatGPT as a language
model developed by OpenAI that offers a wide range of
computer programming capabilities. These capabilities include
code completion, correction, prediction, error fixing, opti-
mization, document generation, chatbot development, text-to-
code generation, and technical query answering. The author
highlighted the ability of ChatGPT to provide explanations
and guidance to users and concluded that it is a powerful tool
for the programming community. Haque and Li [11] explored
the capabilities of ChatGPT as a debugging tool and the
best practices for integrating it into the software development
workflow. Their findings show that ChatGPT is a useful tool
for debugging but should be used cautiously in software
development. Ma et al. [15] performed a study evaluating
ChatGPT capabilities and limitations in software engineering
from three aspects: 1) syntax understanding, 2) static behavior
understanding, and 3) dynamic behavior understanding. The
authors concluded that ChatGPT possesses capabilities akin to
an Abstract Syntax Tree (AST) parser, ChatGPT is susceptible
to hallucination when interpreting code semantic structures
and fabricating nonexistent facts, which underscore the need
to explore methods for verifying the correctness of ChatGPT
outputs to ensure its dependability in software engineering
tasks.

VI. THREATS TO VALIDITY

External Validity. Concerning the generalizability of our
results, our study involves 102 submissions. Although we
obtained valuable information and performed an accurate
analysis, the results may not represent the larger student
population that uses static analysis tools and ChatGPT to fix
issues. Additionally, our analysis was performed on mature
open-source Java projects that varied in size, contributors, and
number of commits. However, we cannot claim the generality
of our observations to projects written in other programming
languages or belonging to different ecosystems. More research
is needed on even more projects to mitigate this threat. Since
ChatGPT training contains a large corpus of source code, from
GitHub and StackOverflow, there is a significant chance of a
data leakage problem, i.e., the proposed fixes were previously
seen in the training set, and so the fixes were previously
memorized. However, the projects used actually contain some
of these warnings in their current versions, which means
that ChatGPT may have experienced these fixes in other
projects, and its current decisions are based on inference.
In addition, ChatGPT performance was not uniform across
categories and underperformed for design-level issues. Finally,
we recommend that students use the free version of ChatGPT
(currently 3.5), but we did not control who uses the premium
service, which features GPT-4.

Internal and Construct Validity. As for the completeness
and correctness of our interpretation of open-ended comments

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

about the tool, we did not extensively discuss all comments
because some of them are open to various interpretations
and we need further follow-up interviews to clarify them.
Additionally, to avoid personal bias during manual analysis,
each step of the manual analysis was conducted by two authors
until a consensus was reached. The choice of PMD, as a
static analysis tool, may introduce some bias to the way
these issues are detected, especially since the detection of
bad programming practices and code smells is known to be
subjective [5], [16], [7], [2], [9], [1]. Also, students may have
had a different experience if another tool was selected in this
assignment. We chose PMD as it is one of the popular state-
of-the-art tools, but in future work, we plan on trying other
static analysis tools to see if they can also reach this level of
satisfaction. In addition, any training for students may induce
training bias. To mitigate it, both PMD and ChatGPT training
were independent. During ChatGPT training, students were
exposed to prompts related to software quality principles, that
they can relate to, but none of the queries was targeting the
type of issues raised by PMD.

VII. CONCLUSION AND FUTURE WORK

Understanding the practice of reviewing code to improve the
quality is of paramount importance for education. Although
modern code review is widely adopted in open-source and
industrial projects, the relationship between using LLMs such
as ChatGPT and how students perceive it during code analysis
remains unexplored. In this study, we conducted a quantitative
and qualitative study to explore the effectiveness of PMD
and ChatGPT in familiarizing students with improving source
code, by i) detecting code issues and antipatterns and ii)
implementing fixes for their correction. The paper develops
a culture of reviewing and patching unknown codes.

Our results reveal several types of static analysis tools that
students should pay more attention to during code review;
reviewing design-related changes takes longer to complete
compared to other changes, and students rated some aspects
of ChatGPT positively while also providing valuable ideas
for future model improvement. For future work, we plan on
using other static analysis tools that will complement and
validate our current study to provide the software engineering
community with a more comprehensive view of the use of
static analysis tools to engage students with software quality
improvement from the educator and student perspectives.
Moreover, we plan to investigate students’ understanding of
code review practice using various real-world applications in
a semester-long course project.

REFERENCES

[1] E. A. AlOmar, S. A. AlOmar, and M. W. Mkaouer. On the use of
static analysis to engage students with software quality improvement:
An experience with pmd. 2023.

[2] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino. Com-
paring and experimenting machine learning techniques for code smell
detection. Empirical Software Engineering, 21(3):1143–1191, 2016.

[3] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba. An
experimental investigation on the innate relationship between quality and
refactoring. Journal of Systems and Software, 107:1–14, 2015.

[4] S. Biswas. Role of chatgpt in computer programming.: Chatgpt in
computer programming. Mesopotamian Journal of Computer Science,
2023:8–16, 2023.

[5] S. Bryton, F. B. e Abreu, and M. Monteiro. Reducing subjectivity in
code smells detection: Experimenting with the long method. In 2010
Seventh International Conference on the Quality of Information and
Communications Technology, pages 337–342. IEEE, 2010.

[6] M. Christakis and C. Bird. What developers want and need from
program analysis: an empirical study. In Proceedings of the 31st
IEEE/ACM international conference on automated software engineering,
pages 332–343, 2016.

[7] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lu-
cia. Detecting code smells using machine learning techniques: are we
there yet? In 2018 ieee 25th international conference on software
analysis, evolution and reengineering (saner), pages 612–621. IEEE,
2018.

[8] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object cate-
gories. IEEE transactions on pattern analysis and machine intelligence,
28(4):594–611, 2006.

[9] F. A. Fontana, P. Braione, and M. Zanoni. Automatic detection of bad
smells in code: An experimental assessment. J. Object Technol., 11(2):5–
1, 2012.

[10] R. M. French. Catastrophic forgetting in connectionist networks. Trends
in cognitive sciences, 3(4):128–135, 1999.

[11] M. A. Haque and S. Li. The potential use of chatgpt for debugging and
bug fixing. EAI Endorsed Transactions on AI and Robotics, 2(1):e4–e4,
2023.

[12] N. Imtiaz, B. Murphy, and L. Williams. How do developers act on static
analysis alerts? an empirical study of coverity usage. In 2019 IEEE 30th
International Symposium on Software Reliability Engineering (ISSRE),
pages 323–333. IEEE, 2019.

[13] B. A. Kitchenham and S. L. Pfleeger. Personal opinion surveys. In Guide
to advanced empirical software engineering, pages 63–92. Springer,
2008.

[14] C. Li, E. Chan, P. Denny, A. Luxton-Reilly, and E. Tempero. Towards a
framework for teaching debugging. In Proceedings of the Twenty-First
Australasian Computing Education Conference, pages 79–86, 2019.

[15] W. Ma, S. Liu, W. Wang, Q. Hu, Y. Liu, C. Zhang, L. Nie, and Y. Liu.
The scope of chatgpt in software engineering: A thorough investigation.
arXiv preprint arXiv:2305.12138, 2023.

[16] M. V. Mäntylä and C. Lassenius. Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software
Engineering, 11(3):395–431, 2006.

[17] S. A. Mengel and V. Yerramilli. A case study of the static analysis
of the quality of novice student programs. In The proceedings of the
thirtieth SIGCSE technical symposium on Computer science education,
pages 78–82, 1999.

[18] M. M. Rahman and Y. Watanobe. Chatgpt for education and research:
Opportunities, threats, and strategies. Applied Sciences, 13(9):5783,
2023.

[19] D. Singh, V. R. Sekar, K. T. Stolee, and B. Johnson. Evaluating
how static analysis tools can reduce code review effort. In 2017
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), pages 101–105. IEEE, 2017.

[20] R. Van Solingen, V. Basili, G. Caldiera, and H. D. Rombach. Goal
question metric (gqm) approach. Encyclopedia of software engineering,
2002.

[21] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni. Generalizing from a
few examples: A survey on few-shot learning. ACM computing surveys
(csur), 53(3):1–34, 2020.

[22] J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. C. Schmidt. Chatgpt
prompt patterns for improving code quality, refactoring, requirements
elicitation, and software design. arXiv preprint arXiv:2303.07839, 2023.

[23] Y. Xian, B. Schiele, and Z. Akata. Zero-shot learning-the good, the bad
and the ugly. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4582–4591, 2017.

[24] X. Yang, Z. Yu, J. Wang, and T. Menzies. Understanding static
code warnings: An incremental ai approach. Expert Systems with
Applications, 167:114134, 2021.

[25] R. Yedida, H. J. Kang, H. Tu, X. Yang, D. Lo, and T. Menzies. How
to find actionable static analysis warnings: A case study with findbugs.
IEEE Transactions on Software Engineering, 2023.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on March 05,2025 at 02:05:47 UTC from IEEE Xplore. Restrictions apply.

