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ABSTRACT

We developed a plugin for IntelliJ IDEA called AntiCopyPaster,
which tracks the pasting of code fragments inside the IDE and
suggests the appropriate Extract Method refactoring to combat
the propagation of duplicates. Unlike the existing approaches, our
tool is integrated with the developer’s workflow, and pro-actively
recommends refactorings. Since not all code fragments need to be
extracted, we develop a classification model to make this decision.
When a developer copies and pastes a code fragment, the plugin
searches for duplicates in the currently opened file, waits for a short
period of time to allow the developer to edit the code, and finally
inferences the refactoring decision based on a number of features.

Our experimental study on a large dataset of 18,942 code frag-
ments mined from 13 Apache projects shows thatAntiCopyPaster
correctly recommends Extract Method refactorings with an F-score
of 0.82. Furthermore, our survey of 59 developers reflects their sat-
isfaction with the developed plugin’s operation. The plugin and its
source code are publicly available on GitHub at https://github.com/
JetBrains-Research/anti-copy-paster. The demonstration video can
be found on YouTube: https://youtu.be/_wwHg-qFjJY.
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** The work was carried out when the author worked at JetBrains Research.
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1 INTRODUCTION

Copying and pasting code constitute an intuitive practice when
writing source code. The resulting duplicate code helps developers
implement similar functionalities and optimize the working process.
Prior research showed that a significant percentage of computer
code consists of duplicate code [8, 12], i.e., fragments of code that
are similar or exactly the same.

Recent studies have shown that duplicate code brings its own
challenges, including bug propagation in duplicated fragments [19].
Hence, removing duplicate code via refactoring has become a com-
mon emerging solution [6]. Refactoring duplicate code consists in
taking a code fragment and moving it to create a newmethod, while
replacing all instances of that fragment with a call to this newly
created method. This refactoring is known as Extract Method [7].

Despite the existence of several studies recommending the refac-
toring of code duplication [1, 10, 24], their adoption is challenged
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Figure 1: The pipeline of AntiCopyPaster. Top: training the model, bottom: using the plugin.

by the need to exhaustively search the entire code base to recom-
mend proper Extract Method refactorings. That is, the whole source
code is used as input to list various Extract Method refactorings for
developers to apply. Such a solution makes a strong assumption
that developers have the expertise of the entire system and the
separate time to consider their options.

To cope with these challenges, this paper aims to support pro-
grammers with just-in-time refactoring of duplicate code by de-
signing AntiCopyPaster, an IntelliJ IDEA1 plugin that refactors
duplicate code as soon as it is introduced. AntiCopyPaster is au-
tomatically launched when a duplicate piece of code is pasted and
is not edited for some time, by displaying a background pop-up
notification, alerting the developer of a potential Extract Method
refactoring. The developer can choose whether to click on the no-
tification or ignore it, until it disappears after a few seconds. If
the notification is clicked, the Extract Method refactoring feature is
called with the duplicate code as input, and a refactoring preview
window is opened. The developer can then apply the refactoring
and suggest a name to the newly created method.

The main advantage of our tool, in contrast with previous works,
is the recommendation of refactoring a code fragment that is within
the current context of development. However, not all duplicate code
fragments need to be refactored, and the main challenge is to effi-
ciently recommend refactoring only when the refactoring is worth
it, to avoid annoying developers with a recommendation whenever
a source code is copied and pasted. The decision of whether the
given duplicate code fragment should be extracted is defined as
a binary classification problem. The duplicate fragment is parsed
using the IDE’s Program Structure Interface (PSI)2 to generate its
corresponding syntactic and semantic model. This model is used to
calculate a set of 78 comprehensive structural and semantic met-
rics, previously used in various studies recommending the Extract
Method refactoring [4, 9, 13, 15, 16, 20, 23]. The metrics’ values are
given as input to a binary classifier, which was trained on a large
dataset of 18,942 previously performed Extract Method refactorings.

We evaluate the correctness of AntiCopyPaster on the same
dataset of 18,942 code fragments mined from 13 mature Apache
projects, which shows that the used CNN model achieves an F-
measure of 0.82. Also, we evaluate the usefulness of AntiCopy-
Paster through a survey with 59 participants. The survey responses
are promising, as the majority of participants are satisfied with the
recommendations of AntiCopyPaster.

1IntelliJ IDEA: https://www.jetbrains.com/idea/
2PSI: https://plugins.jetbrains.com/docs/intellij/psi-files.html

2 APPROACH

In a nutshell, the goal of AntiCopyPaster is to automatically pro-
vide just-in-time recommendations of Extract Method refactoring
opportunities as soon as duplicate code is introduced in the opened
file in the IDE. Our tool takes various semantic and syntactic code
metrics as input and makes a binary decision on whether the code
fragment has to be extracted. The overall framework of our ap-
proach is depicted in Figure 1. The tool and the dataset can be
found on the project’s GitHub page.

Data Collection. Our first step consists of selecting 13 mature
projects from the Apache Software Foundation,3 which are popular
open-source Java projects hosted on GitHub [5]. These curated
projects were selected with respect to both project size and activity.

Refactoring Detection. To extract the entire refactoring his-
tory of each project, we used RefactoringMiner v2.0,4 a widely-used
refactoring detection tool introduced by Tsantalis et al. [21]. We
identify methods that underwent an Extract Method refactoring
(i.e., positive examples) using RefactoringMiner. In total, the tool
mined 9,471 cases of Extract Method refactorings. Specifically, we
discovered Extract Method refactorings, then traversed the history
to the previous commit and took the code fragment that had been
extracted. This allowed us to detect fragments that are worth to
be extracted, since they were extracted in mature projects. These
refactorings are not necessarily only applied in the context of du-
plicate code, and thus our model learns from various contexts (e.g.,
splitting long methods). To collect the negative samples, we start
with selecting all sequences of statements that are eligible to be
extracted. Then, they are ranked according to a special scoring
formula inspired by the work of Haas and Hummel [9]. While their
approach is aimed to find fragments that should be extracted, we
use the bottom 95% of the ranked list to find code fragments that
are less likely to be extracted. Then, to create a balanced dataset,
we sampled 9,471 fragments.

Code Metrics Selection. After collecting positive and negative
examples, we characterize them through various metrics. The goal
of selecting metrics is to identify patterns in their values to allow
distinguishing between the two classes of fragments. To do so,
we gathered all the metrics that have been extensively used in
previous studies [4, 9] and then removed all the redundant metrics
to avoid generating features with similar values. In total, we selected
78 metrics that can be related to the code fragments, enclosing
methods, and coupling.
3Apache projects on GitHub: https://github.com/apache
4RefactoringMiner: https://github.com/tsantalis/RefactoringMiner

https://www.jetbrains.com/idea/
https://plugins.jetbrains.com/docs/intellij/psi-files.html
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Model Training. We define the detection of an Extract Method
opportunity as a binary classification problem. Our intended model
takes a set of metrics as input, and uses them as features to learn
patterns in their values that distinguish between duplicate code
fragments that are more likely and less likely to be extracted. Since
the input corresponds to 78 metrics, we chose to rely on Convolu-
tional Neural Networks (CNNs) for building our model.

3 TOOL IMPLEMENTATION

In this section, we describe the specific implementation of our plu-
gin for IntelliJ IDEA. The plugin consists of four main components.

Duplicate Detector. To detect duplicates, we use bag-of-words
token-based clone detection [14]. This code similarity-based ap-
proach takes a given code fragment as input, then parses all methods
inside the same file, so that each method is represented as tokens.
The next step is to compute the similarity between the code frag-
ment and methods via their abstracted token representation. This
approach can detect an exact match, i.e., when the code fragment is
a substring of the method body. The bag-of-tokens similarity also
takes into account minor changes in the pasted fragment, such as
reordering the sequence of code, or renaming an identifier.

Since it is possible that a code fragment will be significantly
edited soon after it is pasted, in order to avoid the immediate flag-
ging of the pasted code as duplicate, and potentially interfering with
the developer’s flow, we implement a delay and place the pasted
code fragment in a queue. Then, two sanity checks are executed:
we check whether the pasted fragment is Java code and whether
it constitutes a correct syntactic statement. To do that, the plugin
tries to build a PSI tree of the fragment. A PSI (Program Structure
Interface) tree is a concrete syntax tree that is used in the IntelliJ
Platform to represent the structure of code. If a PSI tree can be built
and represents a valid statement, and if the duplicates still remain
after the delay, the code fragment is passed to the Code Analyzer.

Code Analyzer. This component takes the duplicate fragment
as input and uses its PSI representation to calculate the 78 metrics
discussed above. The code fragment, with its corresponding vector
of metrics, constitute the input to the Method Extractor.

Method Extractor. This component takes as input the vector of
metrics, and feeds it to the pre-trained model in order to make the
binary decision of whether this code fragment is similar to the ones
that have been previously refactored in real projects. If the classifier
confirms the refactoring, then Refactoring Launcher is called.

Refactoring Launcher. This component starts with checking if
the pasted code fragment could be extracted into a separate method
without any compilation errors. If all checks pass, a notification
is then enabled to appear in the bottom right corner of the editor,
informing the developer that an Extract Method refactoring is rec-
ommended. If the user responds to the tip, Refactoring Launcher
passes the duplicate fragment as an input to the IDE’s built-in Ex-
tract Method API, and initiates the preview window. The user has
the choice to either confirm the refactoring, while renaming the
newly extracted method, or cancel the entire process.

We further illustrate AntiCopyPaster in Figure 2, showing an
example of a duplicate piece of code pasted and not edited for some
time, and a pop-up notification appearing at the bottom of the IDE,
alerting the developer of a potential Extract Method.

Figure 2: Extract Method refactoring opportunity.

4 EVALUATION

4.1 Correctness

We test the ability of our Convolutional Neural Network (CNN) to
accurately recommend Extract Method refactoring opportunities.
Further, we compare the performance of our CNN model with
four machine learning classifiers: Random Forest (RF), Support
Vector Machine (SVM), Naive Bayes (NB), and Logistic Regression
(LR). The selection of these ML classifiers was due to the fact that
their performance was competitive in similar binary classification
problems [2–4, 11]. In order to evaluate the performance of the
algorithms, we use out-of-sample bootstrap validation since this
validation technique yields the best balance between the bias and
variance in comparison to single-repetition holdout validation [18].

The comparison between the classification algorithms is reported
in Table 1. Based on our findings, the F-measure of CNN is 82%,
higher than its competitors RF, SVM, NB, and LR, achieving 81%,
76%, 56%, and 71%, respectively. We conjecture that a proper con-
veyance of the semantics behind the source code would have re-
quired complex feature engineering using neural network classifi-
cation strategy rather than traditional machine learning algorithms.
This observation has been also supported by previous studies that
utilized deep learning to source code analysis [22, 25].

Despite the fact that there is no model that outperforms all the
others in both precision and recall, the choice of the model can
become the decision of the practitioner who is adopting the tool.
Additionally, it is important to consider the practicality of using
different models. From this standpoint, the trained CNN is smaller
than a Random Forest and loads faster into the memory. At the
same time, our particular implementation of CNN required the use
of the TensorFlow framework, which added a lot of overhead to the
plugin. In future work, we plan to consider other potential libraries
and frameworks for inferencing ML models.

4.2 Usefulness

To evaluate the usefulness of AntiCopyPaster, we performed an
external validation by involving 96 participants from the Rochester
Institute of Technology, Stevens Institute of Technology, and ETS
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Table 1: The performance of different classifiers.

Classifier Precision Recall F-measure PR-AUC

Random Forest 0.83 0.78 0.81 0.86

Support Vector Machine 0.78 0.74 0.76 0.86

Naive Bayes 0.72 0.46 0.56 0.72
Logistic Regression 0.73 0.70 0.71 0.79
Convolutional Neural Network 0.82 0.82 0.82 0.86

Tool setup

Tool
documentation

Ease of use

Execution time

Amount of
pop-up

notifications

-40 -20 0 20 40 60 80 100

-40 -20 0 20 40 60 80 100

% of respondents
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 Somewhat Satisfied    Very Satisfied  

Figure 3: Participants’ satisfaction with various aspects of

the AntiCopyPaster tool.

Montreal. In total, 59 developers participated in the survey (yielding
a response rate of 61.4%, which is considered high for software
engineering research [17]), and 39 of them executed the plugin and
tested it thoroughly.

Figure 3 depicts an overview of their answers.With respect to the
tool setup, most of the respondents reported that they are satisfied
with the tool. Regarding the tool documentation, the majority of
the respondents agreed that the documentation is useful; only a
couple of participants were unsatisfied. For the ease of use aspect, a
larger group was satisfied. Several participants found that the tool
is not easy to use, so we will work on improving the usability of the
tool. Concerning the execution time, most of the participants were
happy with it. For the amount of pop-up notification, the majority
of respondents agreed that the amount of pop-up notifications is
acceptable. There were also a few participants who were not happy
with the amount of pop-up notification, and we are planning on
improving this aspect of the tool in the future.

5 CONCLUSION

Recommending Extract Method refactoring opportunities is critical
to both the research community and industry. Despite the fact
that numerous research works have used a number of ways to
discover Extract Method refactoring, advocating this refactoring
type without interfering with developers’ workflow has largely
remained unexplored. In this study, we proposed AntiCopyPaster
as an IntelliJ IDEA plugin, and experimented with machine learning
models in order to increase the adoption and usage of the Extract
Method refactoring while maintaining the workflow of a developer.
Our findings show that machine learning models are efficient in
identifying Extract Method refactoring opportunities as soon as code
duplicates are presented in the IDE, and that the AntiCopyPaster
tool was well received by developers.
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